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Foreword 
The ACS Symposium Series was first published in 1974 to pro

vide a mechanism for publishing symposia quickly in book form. The 
purpose of the series is to publish timely, comprehensive books de
veloped from ACS sponsored symposia based on current scientific 
research. Occasion-ally, books are developed from symposia sponsored 
by other organizations when the topic is of keen interest to the chem
istry audience. 

Before agreeing to publish a book, the proposed table of con
tents is reviewed for appropriate and comprehensive coverage and for 
interest to the audience. Some papers may be excluded to better focus 
the book; others may be added to provide comprehensiveness. When 
appropriate, overview or introductory chapters are added. Drafts of 
chapters are peer-reviewed prior to final acceptance or rejection, and 
manuscripts are prepared in camera-ready format. 

As a rule, only original research papers and original review 
papers are included in the volumes. Verbatim reproductions of previ
ously published papers are not accepted. 

ACS Books Department 
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Preface 

This book is based on the Accurate Description of Low-Lying 
Electronic States and Potential Energy Surfaces symposium at the 221st 

National Meeting of the American Chemical Society (ACS) in San Diego, 
California from March 30-April 4, 2001. The symposium was organized 
because of our own interests in this area and because of the many recent 
developments in methodology for simultaneous treatment of many elec
tronic states across an extended region at comparable levels of accuracy. The 
availability of such methods underpins developments in other areas such as 
dynamics and spectroscopy and provides necessary information for under
standing phenomena involving electronic excited states. We felt that it was 
useful to bring together the producers and the consumers of such potential 
energy surfaces in the hope that each group would provide stimulus to the 
others. 

Of the 33 invited speakers and the seven who contributed talks, 17 
accepted our invitation to contribute a chapter to this book. These chapters 
are complemented by three additional chapters from individuals to help 
develop a more cohesive book as well as an overview chapter. Approx
imately half of the chapters are focused on the development of ab initio 
electronic structure methods and consideration of specific challenging 
molecular systems using electronic structure theory. Some of these chap
ters document the dramatic developments in the range of applicability of 
the coupled-cluster method, including enhancements to coupled-cluster 
wavefunctions based on additional small multireference configuration 
interaction (MR-CISD) calculations, the method of moments, the 
similarity transformed equation of motion (STEOM) method, a state-
specific multireference coupled-cluster method, and a computationally 
efficient approximation to variational coupled-cluster theory. The con
centration on the coupled-cluster approach is balanced by an approx
imately equal number of chapters discussing other aspects of modern 
electronic structure theory. In particular, other methods appropriate for 
the description of excited electronic states, such as multireference 
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perturbation theory and time-dependent density functional theory, are 
not neglected. Although the book has no pretense of being encyclopedic, 
we intended that the electronic structure sections of the book will 
provide a poised view of state-of-the-art electronic structure theory. 

The complementary half considers either structural or dynamical 
aspects of the coupling of potential surfaces or of regions of potential 
energy surfaces far from stationary points, and includes chapters on a 
diversity of methods and applications that illustrate the breadth of the 
subject, from photodissociation dynamics and molecular resonances in 
unimolecular decomposition to collisions of vibrationally excited mole
cules and comparison of quantum scattering and trajectory hopping results 
for a model system that investigates intersystem-crossing effects. Sym
metry properties of adiabatic-to-diabatic transformation matrices and 
symmetry properties and strategies for efficient evaluation of the spin-
orbit coupling operator are two more of the diverse set of topics that are 
covered. Although the focus of the volume is on small molecules, a 
formulation of semiclassical path integral methods appropriate for stud
ying quantum dynamics in large systems and a chapter on bridging ab 
initio results and thermodynamic properties of collections of molecules are 
included. 

It is our hope that this book will serve as a useful work for advanced 
graduate students and postdoctoral associates in the field of molecular 
electronic structure theory and serve as a useful contemporary reference for 
more established researchers in electronic structure theory, as well as dis
ciplines that directly use potential energy surfaces. In particular, the volume 
was written with the chemical dynamicist and molecular spectroscopist in 
mind. 
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Chapter 1 

Overview: Accurate Description of Low-Lying 
Electronic States and Potential Energy Surfaces 

Mark R. Hoffmann1 and Kenneth G. Dyall2 

1Chemistry Department, University of North Dakota, Grand Forks, ND 58202-9024 
2Eloret Corporation, 690 West Fremont Avenue, Sunnyvale, CA 94087 

This paper provides an overview of recent trends in the 
development of electronic structure theory for the accurate 
characterization of all, or large regions, of ground and excited 
potential energy surfaces. Topics include the treatment of 
dynamical and nondynamical correlation and the calculation of 
nonadiabatic coupling matrix elements, as arising from spin-
orbit coupling and from nuclear motion. 

The theoretical study of accurate potential energy surfaces (PESs) has seen 
some essential progress in the last decade. Much of this progress can be 
attributed, at least in broad terms, to advancements in the ability to include 
nondynamical electron correlation equitably with dynamical electron correlation. 
Perhaps this point can be underscored by noting the tremendous response of the 
greater chemistry community to the CASPT2 (1) functionality in the widely 

© 2002 American Chemical Society 1 
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2 

distributed G A U S S I A N (2) software package. Moreover, CASPT2 is but one of 
many such efforts to achieve a useful balance between the different types of 
electron correlation. There has also been progress in other areas than that of 
correlation, such as nonadiabatic couplings via the spin-orbit interaction and 
nuclear motion. In this chapter we give an overview of some of the important 
theoretical developments. It should be stated at the outset that this overview is 
not intended to be encyclopedic, and more complete bibliographies are to be 
found in the individual chapters of this volume. Rather, this overview represents 
our attempts to indicate important trends in the field and therefore the 
motivations in organizing the symposium that served as a basis of this book. 

Dynamical vs. Nondynamical Electron Correlation 

While the venerable multireference configuration interaction method, 
including single and double excitations (MR-CISD), remains the approach of 
choice for some problems, alternatives have been proposed and are showing 
their usefulness. One can describe MR-CISD as the variational calculation 
within a specified reference, or model, space, c=/o> and the spaces generated by 
all single excitations relative to the specified model space, J!\, and likewise the 
double excitations, J!2. Provided that the model space is sufficiently large to 
describe the nondynamic electron correlation adequately, MR-CISD provides a 
well-balanced and unbiased description of both nondynamic and dynamic 
electron correlation. It is precisely in the caveat in which lies the problem with 
MR-CISD. Since the size of the excitation spaces c^i and Jit grow rapidly with 
the size of the dimension of the model space, «/o, one is often faced with the 
unpleasant task of restricting J!Q to a size smaller than physically justified. Of 
course, if such restriction is not required for the problem at hand, MR-CISD is a 
reliable and robust method and, so, continues to see modern usage. It is also 
worth noting that MR-CISD suffers from a lack of size-extensivity, and, although 
this is usually not a serious problem, relative to other sources of error, for the 
mapping of PESs of small molecular systems, there is need for theoretical 
advancements. 

In situations in which physically well-motivated MR-CISD calculations are 
not computationally feasible, the need for adequate approximations of 
nondynamical and dynamical electron correlation must be balanced. One useful 
way of categorizing alternatives to MR-CISD is to focus on the sequence of 
treating nondynamical and dynamical correlation. One could address dynamical 
correlation for all, or part, of the model space first and, then, proceed to address 
the nondynamical correlation. This approach gives rise to an effective 
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3 

Hamiltonian. Indeed, this approach, with many variations, finds expression in 
the current coupled cluster equation of motion (EOM) or similarity transform 
E O M (STEOM) procedures (3-5) and also in the multireference (or 
quasidegenerate) perturbation theory approaches (MRPT or QDPT) (6-10). In 
fact, the CCSD(T) method (11), which was recently referred to as the "gold 
standard" of modern quantum chemistry (12), also addresses dynamic correlation 
prior to nondynamic correlation. However, since CCSD(T) is generally only 
applicable to the ground electronic state (or, possibly, the lowest state of a 
particular symmetry) and the emphasis of this volume is on multiple PESs, this 
approach is not considered in any detail herein. Alternatively, one could address 
the nondynamical correlation first and then only consider the dynamical 
correlation. State selective methods, including "diagonalize-then-perturb" 
multireference perturbation theories (e.g., CASPT2) and internally-contracted CI 
methods (13), are of this philosophy. Taking into account that both general 
approaches are currently being used successfully, and continue to be developed 
further, it must be clear that both have merit. 

Multiple Potential Energy Surfaces 

One criterion for recommending effective Hamiltonian methods over state-
selective methods is whether multiple PESs are of simultaneous interest. State-
selective methods are in general capable of determining excited PESs, even of 
the same symmetry as the ground state (or lowest state of a given symmetry), 
but, by their nature, use essentially different representations of the multiple 
surfaces. Conversely, precisely because state-selective approaches need 
consider only one state in a particular calculation, they can often achieve quite 
high computational efficiencies. In many of the state-selective procedures, a 
multiconfiguration self-consistent (MCSCF) calculation is performed to 
determine the nondynamical electron correlation, after which the dynamical 
electron correlation method of choice is applied. So, for different states, 
different molecular orbitals will be used. This complicates, but not hopelessly, 
the calculation of matrix elements that couple surfaces. Such matrix elements 
arise when considering nonadiabatic effects, i.e., in consideration of spin-orbit 
coupling or nuclear derivative coupling. 

Multiple PESs may be of simultaneous interest based not only on physical 
reasons, as emphasized in the previous paragraph, but also for mathematical or 
computational reasons. Consider the basic paradigm of state-selective methods: 
the nondynamical electron correlation for a specific state is calculated within a 
model space and then the dynamical electron correlation is calculated. The 
implicit assumption is that the zero-order model space many-electron basis 
functions (MEBFs) (e.g., M C S C F functions and M C S C F complementary space 
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functions) are sufficiently close to the correlated (i.e., true) model space M E B F s 
that the mixing between the correlated space M E B F s can be made on the basis of 
the zero-order model space MEBFs . In fact, for well-separated states, and a 
physically realistic model space, this assumption is well founded. However, in 
cases in which the states are in close proximity the dynamic electron correlation 
can significantly alter the mixing between zero-order fonctions of the model 
space. Avoided crossings represent just such physical conditions. In these 
cases, state-selective methods are presented with severe mathematical 
challenges. The reader is directed to the chapter by Mukherjee in this volume in 
which recent progress on this problem has been made. On the other hand, it is 
precisely in such situations that multireference or quasidegenerate methods, 
which form effective Hamiltonians, are most appropriate. The dynamic 
correlation is considered prior to the nondynamic correlation that mixes the two 
close lying states. 

However, effective hamiltonians can be mathematically unstable in precisely 
the situations in which state selective methods are most adept: widely separated 
energy levels. The problem is the appearance of intruder states, whether 
physical (or infinite order) or zero-order (i.e., many-electron basis functions). 
Intruder states stymied the development of quasidegenerate perturbation theories 
for many years and, although there are now known remedies, intruder states 
continue to require care when formulating new variants of QDPT. In essence, 
one compromises on the goal of treating the effect of dynamical electron 
correlation on the entire model space prior to consideration of nondynamical 
correlation. As pioneered by Malrieu and coworkers and by Kirtman, one 
contents oneself with describing only part of the model space well. Recent work 
in the group of Hoffmann has demonstrated that it is feasible to remove the 
arbitrariness in selecting the part of the model space that will be treated well 
(14). 

In fact, both state-selective methods and effective Hamiltonian methods are 
faced with the challenge of describing variable quasidegeneracy equitably over 
entire potential energy surfaces. 

Nonadiabatic Coupling Matrix Elements 

Several other issues are relevant to the discussion of multiple PESs. As 
previously mentioned, multiple PESs are required for the description of any 
nonadiabatic effects. Such processes arise in considering relativistic effects and 
nuclear dynamics. The situation here is more complex than with just the 
calculation of multiple PESs. Indeed, the accuracy and effort of the calculation 
of nonadiabatic matrix elements must be assessed against the reliability of the 
PESs themselves. Furthermore, the issue of coupling of adiabatic surfaces 
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5 

places additional emphasis on the criterion of uniform accuracy of PESs. 
Whereas for individual PES calculations it might not be really essential to 
maintain uniform accuracy, provided, for example, that each PES had its critical 
points (e.g., local minima and transition states) calculated at comparable 
accuracies, for nonadiabatic effects it may be regions of PESs far removed from 
these relatively benign points which require uniform accuracy. It is precisely for 
this reason that the majority of studies involving nonadiabatic dynamics and 
relativistic descriptions of stationary points have utilized MR-CISD 
wavefunctions. However, as previously noted, computational considerations 
recommend the development of alternatives to MR-CISD. 

The development of methods for inclusion of relativistic effects on PESs is 
at a much earlier stage than that of electron correlation effects. Granted, scalar 
relativistic effects can be - and have been - routinely incorporated into 
nonrelativistic calculations, either using effective core potentials or ab initio 
model potentials, or one of the scalar all-electron methods such as the Douglas-
Kroll-Hess (15,16) method. The incorporation of spin-orbit coupling is more 
difficult because it breaks both the spatial and the spin symmetry of the 
nonrelativistic wavefunction. But it is precisely this phenomenon that makes it so 
interesting and important in the consideration of multiple potential energy 
surfaces. Spin-orbit mediated avoided crossings can radically change reaction 
dynamics, for example, and change the nature of conical intersections, as shown 
earlier (17), and addressed further in this symposium, by Yarkony. 

Furthermore, one must consider where to include spin-orbit effects in 
relation to both dynamical and nondynamical correlation. The most widely used 
approach is to construct an effective Hamiltonian for spin-orbit coupling from 
M R C I wavefunctions that are built from a common orbital set. The small set of 
wavefunctions is often sufficient to describe spin-orbit coupling between the 
nonrelativistic surfaces, and was used to good effect by Werner in the reaction 
dynamics calculations presented in this symposium. Another approach is to 
obtain a set of natural orbitals from M R C I calculations and use these in a CI 
calculation that includes spin-orbit interaction. In this way dynamical correlation, 
nondynamical correlation and spin-orbit interaction are treated on the same 
footing, albeit with some compromise on the first of these three. 

The more rigorous approaches are still in their infancy due largely to 
technical difficulties and the magnitude of the calculations resulting from the 
lowering of the symmetry. These approaches include M R C I methods based on 
nonrelativistic wave functions such as that of Yabushita and coworkers (18) and 
Rakowitz and Marian (19) that include the spin-orbit interaction on an equal 
footing with the Coulomb (or scalar relativistic) interaction, and methods that 
start from spin-coupled wavefunctions, either at a 2-component or 4-component 
level (20). Such methods are necessary to address the challenges like those 
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6 

presented by high-accuracy experimental PESs for the halogen monoxides 
measured by Miller and coworkers (21 ). 

Nondynamical (or Static) Correlation 

Another issue which is relevant to the accurate description of PESs is the 
question of the treatment of nondynamical correlation. Above, we accepted, 
without comment, the conventional paradigm of description of nondynamical 
electron correlation by an M C S C F calculation, in the case of antecedent 
nondynamical electron correlation, or of a variational calculation within the 
model space in the case of subsequent nondynamical electron correlation. 
Although this is the modus operandi, which usually takes specific form in a 
CASSCF calculation and/or a state-averaged variant (SA-MCSCF), this can 
hardly be considered a wholly resolved issue. Indeed, it has been shown that 
coupled cluster based alternatives to variational calculations within a model 
space have merit. Within this volume, Head-Gordon describes some very recent 
advances. Another related issue concerns the molecular orbitals themselves. 
Earlier, Freed demonstrated that high-lying valence molecular orbitals obtained 
from M C S C F calculations are not particularly desirable MOs for describing 
excited states (22), as required in an effective hamiltonian calculation. Although 
the situation may be expected to be improved by increasingly large state-
averaged calculations, such calculations can of themselves become 
computationally resource significant. Moreover, such calculations are quite 
prone to optimization to one of many, and possibly myriad, local minima; thus, 
seriously raising the question of reproducibility. In this volume, Freed and 
coworkers give further account of efforts to circumvent the low occupation M O 
problem by a novel improved virtual orbital scheme. 

Concluding Remarks 

One of the driving forces for the development of theoretical methods to 
describe accurately ground and excited PESs, and their couplings, is the study of 
chemical reaction dynamics [for a recent overview, with many references, see 
Ref. (23)]. Although many reactions can be reasonably well described as 
proceeding on a single adiabatic surface, there are at least two regimes in which 
this conceptualization is wanting. First, near dissociation limits PESs that are 
well isolated from each other in other geometrical regions can become 
quasidegenerate or even exactly degenerate. In such situations, couplings, such 
as spin-orbit, Coriolis and nuclear derivative, can give rise to an effective PES 
that is different than the adiabatic surface. As mentioned previously, the 
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challenge to electronic structure theory is to describe surfaces equitably under 
conditions of variable quasidegeneracy. Second, even in the interior, or non-
fragment, regions of PESs, it may be the case that two surfaces couple relatively 
strongly in a small geometrical region. Using a classical description, reaction 
paths approaching or passing through such regions can lead to qualitatively 
different results than in the absence of the couplings. Conical intersections are a 
dramatic example. In this symposium, several speakers were asked to describe 
advances and challenges in chemical reaction dynamics. Several of the speakers, 
complemented by contributions from outside the symposium, also contributed to 
this volume. Although this volume is even less comprehensive with respect to 
advances in chemical dynamics than it is with respect to the description of PESs, 
it was our intention that the interplay between electronic structure theory and the 
study of chemical reactions be represented herein. 
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Chapter 2 

Simultaneous Account of Dynamic and Nondynamic 
Correlations Based on Complementarity of CI 

and CC Approaches 

Xiangzhu Li1 and Josef Paldus1,2 

1Department of Applied Mathematics, University of Waterloo, Waterloo, 
Ontario N2L 3G1, Canada 

2Department of Chemistry and Guelph-Waterloo Center for Graduate Work 
in Chemistry, University of Waterloo, Waterloo, Ontario N2L 3GI, Canada 

In order to overcome the shortcommings of standard post-Hartree-Fock 
approaches in their handling of the dynamic and nondynamic 
correlations, we investigate the possibility of mutual enhancement 
between variational and perturbative approaches, as represented by 
various CI and C C methods, respectively. This is achieved either via the 
amplitude-corrections to the one- and two-body CCSD cluster 
amplitudes based on some external source, in particular a modest size 
M R CISD wave function, in the so-called reduced multireference 
(RMR) CCSD method, or via the energy-corrections to the standard 
C C S D based on the same M R CISD wave function. The latter 
corrections are based on the asymmetric energy formula and may be 
interpreted either as the M R CISD corrections to CCSD or R M R 
CCSD, or as the CCSD corrections to M R CISD. This reciprocity is 
pointed out and a new perturbative correction within the M R CISD is 
also formulated. The earlier results are briefly summarized and 
compared with those introduced here for the first time using the exactly 
solvable double-zeta model of the H F and N2 molecules. 

10 © 2002 American Chemical Society 
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I. Introduction 

The variational methods of the configuration interaction (CI) type and the 
perturbative-type methods relying on the exponential coupled-cluster (CC) 
Ansatz are the most often used approaches in ab initio computations of highly 
accurate molecular properties, in particular of the potential energy surfaces 
(PESs) or curves (PECs) for the purposes of molecular dynamics [for recent 
reviews, see Refs. (1-4)]. In this latter case it is essential that the entire surface 
— or its various one- or multi-dimensional cuts — is available for a wide enough 
range of molecular geometries. 

For nondegenerate states, the single reference (SR) version of either the CI 
or C C method, truncated at the doubly excited level (i.e., CISD or CCSD, 
respectively), is capable of producing reasonably accurate results. Unfortunately, 
the requirement of nondegeneracy is invariably violated when we break genuine 
chemical bonds, which in turn enhances the importance of higher than doubly-
excited configurations or connected cluster components, in particular of the 
triply (T) and quadruply (Q) excited ones. Since the number of the 
corresponding parameters dramatically increases with the increasing size of the 
basis set, such methods become computationally unaffordable, except for smaller 
benchmark systems. Moreover, when breaking triple bonds, even hexuples play a 
non-negligible role. Clearly, an appropriate approach in such cases is to use the 
multireference (MR) formalism that is based on a suitable model space ^b, 
which is spanned by those quasidegenerate configurations that enable an 
appropriate description of the relevant dissociation channel(s). 

In this regard, it is important to emphasize the multifaceted complementarity 
of CI and C C approaches (5). While the generalization of SR CISD to M R CISD 
is, at least conceptually, straightforward (even at the spin-adapted level; see e.g. 
U G A based formalism (6)), this is not the case for C C approaches. The 
stumbling block is the ambiguity in the generalization of the SR C C Ansatz to 
the M R case. Although two such viable M R Ansâtze have been formulated 
[namely the valence universal or Fock space and state universal or Hubert space 
Ansâtze; cf., e.g. Réf.(7) for an overview], their complexity and especially 
various conceptual difficulties (such as the intruder state problem, multiplicity of 
solutions and their genealogy, etc.) prevented the development of efficient 
general purpose codes to this very day. Consequently, many of the current 
developments focus on the so-called state specific or state selective (SS) 
approaches, i.e., an essentially SR approaches that are guided, in one way or 
another, by the M R formalism. 
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12 

Another aspect of the just mentioned complementarity is the ability with 
which the CI and C C approaches account for the dynamic and nondynamic 
correlations. As alluded to above, the CI approaches are very efficient in 
handling of the latter, already at a low-dimensional level, while the dynamic 
correlation requires the inclusion of a large number of highly-excited 
configurations, thus making unrealistic demands on the dimensionality of the CI 
matrices one has to handle. For this very reason, even at the M R level, the CI 
results are invariably corrected ex post by relying on various semi-empirical 
Davidson-type corrections. 

In contrast to CI, the C C approaches, even at the SR level, very efficiently 
account for the dynamic correlation thanks to the exponential CC Ansatz for the 
wave operator. The general form of the C C wave function also automatically 
guarantees the size-extensivity of the computed energies [as do, in fact, the 
individual linked diagrams of the many-body perturbation theory (MBPT)]. 
Unfortunately, this size-extensive property is of a little use when the nondynamic 
correlation is not properly accounted for. Indeed, the CCSD PECs often display 
an artificial "hump" in the region of intermediate internuclear separations, as 
well as grossly erroneous asymptotic behavior in the completely dissociated limit 
[cf., e.g. the CCSD PECs for N 2 in Refs. (8,9)1 

Numerous steps have been undertaken in order to overcome these 
shortcommings of the standard CCSD method. The simplest way to achieve a 
proper dissociation limit (size-consistency) is to employ the unrestricted Hartree-
Fock (UHF) reference. This often works rather well, except that UHF solution(s) 
exist(s) only in a limited range of internuclear separations and, at the onset of the 
R H F triplet instability the computed energies display a nonanalytic behavior. Of 
course, in more general situations, the U H F solution may dissociate to a wrong 
limit [cf., e.g. Refs. (4,10)]. not to mention the multiplicity and often haphazard 
behavior of various broken-spin-symmetry solutions, spin contamination, etc (4). 
Thus, this approach is usually reserved for computation of dissociation energies 
rather than for the generation of accurate PESs. 

The effect of higher than pair clusters (primarily of triples) is often 
estimated perturbatively. This is particularly efficient as long as the state 
considered remains nondegenerate, as is the case for nearly equilibrium 
geometries. In such cases, the often-employed CCSD(T) method (11) yields 
invariably excellent results (3,12). Unfortunately, with the increasing 
quasidegeneracy, the perturbative treatment of triples breaks down, even in cases 
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where the standard SR C C S D works well and the CCSD PEC does not show any 
"hump" [cf., e.g. the case of the HF molecule (4)]. 

Turning our attention to various SS type CCSD approaches, we first 
mention those based on the SR CCSDTQ method (13), in which the Τ and Q 
manifolds are severely truncated, yet the full CCSDTQ equations are employed 
(14). The most suitable truncation, leading to the so-called CCSDtq method (75), 
relies on the same choice of the Τ and Q cluster amplitudes as our R M R CCSD 
method (see below). These methods do provide a substantial improvement over 
the standard CCSD yet, in spite of the truncation, become computationally 
demanding with the increase of the A O basis set, not unlike CCSDTQ itself. 

While all the above listed methods rely solely on the C C formalism (and, in 
some cases, on finite order M B P T ) , the so-called externally corrected (ec) 
CCSD methods (4,16,17) try to simultaneously exploit the information from 
some independent source, which is capable of handling the nondynamic 
correlation, is readily available, and requires only modest computational effort. 
The essence of these ecCCSD methods stems from the fact that the C C energy, at 
whatever level of truncation, is fully determined by the one- and two-body 
clusters via the asymmetric energy formula 

Ecc = (Φο IH Wcc) = <Φο IΗ (1 + Tx + T2 + 7\2/2) ΙΦ 0). (1) 

This implies that one way to improve this energy is to improve the accuracy of 
the one- and two-body cluster amplitudes. We thus also refer to these approaches 
as the amplitude-correcting methods. 

In ecCCSD methods this improvement is achieved by extracting a subset of 
important three- and four-body cluster amplitudes from the external source wave 
function and by using them for a physically more meaningful decoupling of the 
C C chain of equations at the pair cluster level. In practice this means that the 
external source wave function is first cluster analyzed, and the resulting 
approximate three- and four-body clusters Γ 3

( 0 ) and Γ 4

( 0 ) , respectively, are then 
used to evaluate the corresponding terms Λ ( 1 ) (3), Λ ( 2 ) (3), Λ ( 2 ) (4), and Λ ( 2 )(1,3) in 
eqs. (2.76) of Ref. (4). Finally, the corrected CCSD equations are solved just as 
in the standard CCSD method (4,16-19). 

Various wave functions have been employed as the external source, in 
particular the U H F (20,21), V B (18), CASSCF or CASCI (5,19) wave functions, 
but the most effective and practical turned out to be a modest size M R CISD 
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(5,22-25), which employs a small reference or model space 3% This method is 
referred to as the reduced multireference (RMR) CCSD and yields excellent 
results (26-30). 

In addition to these amplitude-correcting approaches, it is also possible to 
formulate the energy-correcting methods, which directly compute the energy 
corrections to various C C energies. This is in fact the case of the CCSD(T) 
method, which uses a perturbative estimate of triples and calculates the 
corresponding energy correction (7/). The above mentioned breakdown of 
CCSD(T), as one moves away from the equilibrium geometry, has been largely 
avoided by the design of the so-called renormalized versions, referred to as 
RCCSD(T) and RCCSD(TQ) methods (31). These arose as a special case of the 
recently developed method of moments (MM) C C approach by Piecuch and 
Kowalski (32), who also extended it to the equation of motion (EOM) C C and 
state universal M R C C (33). Indeed, the results obtained so far are most 
encouraging (31-33). 

We have recently pursued this idea and developed several energy-correcting 
approximations by relying on the simple asymmetric energy formula (9,34). Here 
we relied again on the low-dimensional M R CISD wave function and, in lieu of 
projecting onto the SR configuration ΙΦ0), as in the standard C C or R M R CCSD 
methods, we project onto the zero-order or full M R CISD wave function. This 
approach can be interpreted either as the MR-CISD-based energy correction to 
C C S D or R M R CCSD or, conversely, as CCSD- or RMR-CCSD-based 
correction to M R CISD. The test applications carried out so far are very 
encouraging (9,34). 

Let us finally mention two additional SS-type C C approaches that strive for 
the same goal. First, we mention the valence optimized orbital (VOO) CCSD 
method (35) and the variational V C C D method of Van Voorhis and Head-
Gordon (8). Particularly the latter approach, based on the energy expectation 
value with the C C D cluster Ansatz, represents the upper bound to (full) FCI or 
FCC, and thus avoids the fallacious asymptotic behavior of standard CCSD 
PECs [see, e.g. the case of N 2 (8,9)]. Yet, the variational requirement tends to 
raise the energy [cf. also Ref. (36)] and produces a rather significant 
overestimate in the R - » «> limit [e.g., about 45 mhartree for the V D Z model of 
N 2 , cf. Ref. (8)], not to mention the complexity of the resulting formalism which 
depends factorialy on the electron number. 

The SS methods, which most closely follow the M R formalism, have been 
recently pursued by Mukherjee and collaborators (37), by Hubac and 
collaborators (38), and by MeiBner and Paldus (39-41). This last approach relies 
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on the direct iterative solution of the generalized Bloch equations (referred to as 
the D G B method). A l l these methods do avoid the intruder state problem and can 
handle the excited states of the same symmetry as the reference. Mukherjee's SS 
version (37) of the state universal M R CCSD, in its so-called relaxed and 
nonrelaxed versions, is conceptually reminiscent of the perturb-first diagonalize-
later and diagonalize-first perturb-later M B P T , respectively. For the lowest state, 
though, this M R C C method (37) (at least in its nonrelaxed version) does not 
perform as well as the R M R CCSD (22) or DGB (40) methods. Finally, the 
approach of Hubac et ah is based on the Brillouin-Wigner-type M B P T and must 
take special precautions to achieve size extensivity. 

It is hoped that the above listed approaches will eventually provide a rich 
"toolbox" enabling a proper, yet affordable account of both dynamic and 
nondynamic correlations, and will enable a routine generation of reliable PESs 
for the purposes of molecular dynamics and spectroscopy. In this paper we wish 
to compare the performance of amplitude- and energy-correcting methods, using 
the exactly solvable D Z model of the HF and N 2 molecules. In addition, we 
formulate and test the new perturbative-type corrections to M R CISD. We show 
that both the amplitude- and energy-corrected schemes can provide very good 
results even in the difficult case of the triple bond breaking. 

II. Amplitude-Correcting Methods 

We focus here on the R M R CCSD version of ecCCSD, for which numerous 
applications have been carried out (22-30), and leave the comparison with the 
energy corrected approaches for Sects. I l l and IV. In order to illustrate the 
capabilities of R M R CCSD, we only summarize our recent work (29,30), which 
compares the calculated and experimentally directly observed spectroscopic data 
for the HF and N 2 molecules. In this work we used a low-dimensional (dim MQ = 
4 or 8; further referred to as 4R and 8R reference spaces) R M R CCSD to 
generate PECs, which were subsequently used to compute the corresponding 
rovibrational levels with the LEVEL codes of LeRoy (42) and, finally, the 
frequencies of relevant spectral lines. For the sake of brevity, we focus here on 
the vibrational levels, since the rotational sublevels depend strongly on the 
average bondlength and are easier to match. For example, for the experimentally 
observed frequencies in the fundamental rotational Raman band of N 2 (for J 
values ranging from 0 to 18) we obtained an excellent agreement with deviations 
not exceeding 0.6 cm" 1 using either CCSD or 8R-RMR C C S D (29). 

For the cc-pVQZ model of HF, the average error for the first 20 vibrational 
levels amounts to 113.8 cm" 1 when computed with the 4R-RMR CCSD method, 
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representing a dramatic improvement over the standard CCSD in which case this 
average error amounts to 1099 c m - 1 (30). At this point it is important to 
emphasize the crucial role of the basis set employed. Indeed, one can obtain 
accidentally a good agreement with the experiment due to the error cancellation. 
This is illustrated in Table I for the vibrational levels of H F obtained with the 
standard C C S D and 4R-RMR CCSD methods with cc-pVXZ basis sets, ranging 
from X=D to X=Q. We only present the average deviations from the 
experimental values in this table for different ranges of the vibrational quantum 
number v. We see that the cc-pVDZ CCSD results seem to yield very good result 
with the average deviation for the first 17 levels (from v=0 to v=16) of 145 cm" 1. 
However, this rather good agreement deteriorates when we employ larger and 
larger basis sets (to an almost 800 cm" 1 for cc-pVQZ basis). On the other hand, 
we observe a systematic improvement, particularly for the high lying levels, 
when we employ 4R-RMR CCSD method. Indeed, die average error for the first 
17 levels decreases from 727, to 141, to 81 c m - 1 as we proceed from the DZ, to 
TZ, to QZ basis, respectively. 

Table I. Mean absolute deviations of computed from experimentally 
observed vibrational frequencies for levels from V i to v 2, Ave(Vi-v2)> 

for the HF molecule obtained with CCSD and 4R-RMR CCSD 
methods and cc-pVXZ (X=D,T,Q) basis sets. 

A v e ( v r v 2 ) SR CCSD 4R R M R CCSD 

X=D X=T X=Q X=D X=T X=Q 

Ave(0-4) 52.8 191.0 168.0 19.7 78.6 53.8 

Ave(5-9) 84.3 608.6 582.4 267.8 160.1 118.9 

Ave(10-14) 162.7 1104.2 1191.5 1190.1 90.4 81.1 

Ave(0-16) 145.4 748.8 793.5 727.0 141.4 81.3 

Turning our attention to the demanding triply bonded case of N 2 , we find 
again a dramatic improvement in the agreement between the experimentally 
determined and computed vibrational term values as we proceed from standard 
C C S D to 4R-RMR, and to 8R-RMR CCSD, as illustrated for a few levels (for 
v=0, 5, 10, 15, 20 and 25) in Table II [actually, the highest experimentally 
observed level corresponds to v=15 and the values up to v=25 were obtained via 
the R K R procedure (43)]. For example, for the highest available v=25 level, the 
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discrepancies from the experimental value decrease from 2872, to 357, to 93 
cm" 1 as we go from CCSD, to 4R-RMR, to 8R-RMR CCSD (29) (see Table II). 

Table Π. Vibrational term values G(v) for selected levels ν of the N 2 

molecule, and the deviations from the experimental values, 
G(v)-G ( e x p ) (v), as obtained with the C C S D , 4R- and 8R-RMR C C S D 

methods and the cc-pVTZ basis set. All values are in cm"1. 

V G(v) G(v)-(?exp)(v) 
Exp. C C S D 4R-RMR 8R-RMR 

0 1175.80 33.80 3.40 2.90 
5 12538.30 412.60 45.30 39.00 
10 23180.20 871.20 100.80 73.20 
15 33094.40 1422.70 169.90 93.40 
20 42270.80 2083.60 254.70 99.40 
25 50696.00 2872.00 356.60 92.90 

Table ΠΙ. Average deviations of calculated from experimental frequencies 
in the vibrationally excited Raman bands of the N 2 molecule, as obtained 
with the C C S D , 4R- and 8R-RMR C C S D methods and cc-pVTZ basis set. 

The last column gives the range of experimentally available rotational / 
values, /min-v/max? and the difference between the maximum and minimum 
deviations for this range of rotational sublevels is enclosed in parentheses. 

CCSD 4R-RMR 8R-RMR Jmin Jmax 

<AQi) 72.82(0.31) 7.91 (0.10) 7.15 (0.08) 0--14 
<AQ2) 75.89 (0.63) 8.44(0.18) 7.37 (0.14) 0--20 
<AQ3) 78.92 (0.64) 9.06(0.18) 7.54 (0.13) 0--20 
<AQ4> 81.98 (0.55) 9.55 (0.16) 7.54 (0.11) 0--18 
(AQ5> 85.18 (0.49) 10.15 (0.12) 7.54 (0.07) 2--17 
<AQ6> 93.21 (0.86) 11.23(0.20) 7.71 (0.09) 2--22 
(AQ 7) 91.78 (0.20) 11.07(0.05) 6.90 (0.02) 6--12 

Even more direct comparison is shown in Table III where we present the 
average deviations from the experimentally measured frequencies in several 
vibrationally excited Raman bands as obtained with CCSD, 4R- and 8R-RMR 
C C S D (29) (the range of / values is shown in the last row). These deviations 
systematically increase with the increasing / value and the difference between 
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the maximum and minimum deviations for the given range of rotational quantum 
numbers J is given in parentheses. We see that for the standard CCSD, the 
discrepancies range from about 72 cm" 1 to 92 cm" 1. A significant improvement is 
found with 4R-RMR CCSD when both the magnitude and the range of these 
deviations are lowered to 8 and 11 cm" 1. With the 8R-RMR CCSD, we get an 
almost constant shift of about 7.5 cm"1 for all the vibrational bands, so that the 
corresponding spectrum is practically identical with the experimental one except 
for a small and almost constant shift. 

III. Energy-Correcting Methods 

We now proceed to the other option of improving on standard CCSD via 
various energy corrections and focus on the very recently proposed schemes that 
are based on the asymmetric energy formula of C C theory (9,34). We first very 
briefly present the basic formalism and refer the reader to the original papers for 
detail (34) [see also Refs. (31-33)]. At the same time we also present yet another 
perturbative energy correction, this time for M R CISD. We then compare the 
performance of these corrections using the same D Z models of HF and N 2 as in 
Refs. (9,34). 

Theory 

Let Ιχ) designate a normalized Cl-type wave function associated with some 
subspace M - Span{I#,)} of the relevant iV-electron space V (say, the SD 
subspace relative to ΙΦ0> or relative to some model space 7%o), 

ΐ χ ^ Σ ^ ΐ Φ , ) , <χΐχ) = ΐ , (2) 

and ΙΨ) an intermediately normalized CC-type wave function given by a SR C C 
Ansatz relative to the reference configuration ΙΦο), 

!Ψ> = eT ΙΦ 0 ) , <Φ 0 ΙΨ> = <Φ01 eT ΙΦ0) =1. (3) 

In principle, Τ is arbitrary, even though we shall only consider CCSD and R M R 
CCSD Ansâtze. We further assume that both CI and C C wave functions have 
been obtained in a standard way, i.e., by diagonalizing the Hamiltonian Η within 
the space M and by solving the appropriate C C equations, respectively, and we 
associate with them the corresponding energies 
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^ ι = <χΐ^ΐχ)/<χΐχ) = (χΐΗΐχ), (4) 

Ecc = <Φ 0 \Η\Ψ)/(Φ0 ΙΨ) = <Φ 0 Ι # / Ι Φ 0 > = Ε0 + <Φ0 m^+K+Tfa) ΙΦ0>, (5) 

where Ε0 = (Φο ΙΗΙΦο). Note that in the standard C C theory, the energy depends 
only on one- and two-body clusters Tx and Γ 2 , respectively. 

We next consider the energy quantity S, given by the asymmetric energy 
formula 

ε = ε(χ,Ψ) = (χ\Η\Ψ)/(χ\Ψ), (6) 

which combines the CI and C C energy formulas: ECi results when we set ΙΨ) = 
Ιχ) and ECc is obtained when (χί = (Φ0Ι. An interesting fact is that with a properly 
chosen CI wave function in lieu of (Φ 0Ι, we can obtain a much better result than 
the standard C C energy, eq 5. 

It is not difficult to see that the energy Β can be expressed either as the CI 
energy ECi plus a correction or as the C C energy Eœ plus a correction (34). To 
see the former claim, we note that the action of the Hamiltonian H on the CI 
wave function gives 

Η Ιχ> = £ α Ιχ) + I i e ^ ΙΦ,) (Φ, \H Ιχ>, (7) 

where the sum extends over all configurations spanning the orthogonal 
complement Tfë1 of M in V. In order that the matrix element (Φ/ϋϊΙχ) does not 
vanish, the configuration ΙΦ,) must belong to the interacting space of M, which 
we shall designate by We can thus replace the sum over i e in eq 7 by 
ie Using now the hermitian conjugate of eq 7 in eq 6 with ΙΨ) given by eq 
3, we obtain 

S = £ a + <χΙ Η ΙΦ,) (Φί I eT ΙΦ0) /<χ\βτ ΙΦ0), (8) 

We see that the second term on the right hand side of eq 8 describes the 
interaction between the CI wave function Ιχ) and its interacting space, and thus 
can be expected to improve the CI energy by supplying the missing dynamic 
correlation part. 

We can also interpret the correction to ECi, eq 8, as the second-order 
perturbation theory (PT) contribution. For this purpose we consider the space Τϋ 
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= ΜΘ 1$è* and regard Ιχ) as a zero-order wave function with the unperturbed 
Hamiltonian HQ = PHP, where Ρ designates the projection operator onto *Mt. The 
perturbation W is then given by W = PHQ + QHP + QHQ, where Q = I - Ρ = 
PL is the projector onto ^ s and / is the identity on The first order wave 
function Ιχ ( 1 )) then takes the general form 

Ιχ(1)> = Ιχ) + X i W S c,(l)ΙΦ;>, <χΐχ ( 1 )) = l . (9) 

The corresponding zero-order energy £(0) is given by EC\ = (χΙ#ο '%) = (χΙ#'χ)> 
the first-order energy E(l) = {%\W\%) vanishes, and the second-order energy E(2) 
is 

E(2) = (X\Wtfli) = Σ ^ {χ\ΨΙΦ,·) c,(1) = Σ (. £^ 3 (χ Ι ίΓΙΦύο/" . (10) 

If we now employ the C C wave function ΙΨ), eq 3 — renormalized as ΙΞ) = 
ΙΨ)/(χΙΨ) , so that ( χ Ε ) =1 — to estimate c, ( 1 ), we find easily that [cf. also 
Reî.(34)] 

ο/ 1 ) =<Φ ι · ΙΨ>/(χΙΨ) = < Φ ί · ΐ / ΐ Φ 0 ) / < χ ΐ / ΐ Φ ο > . ( H ) 

Substituting this result into eq 10, we recover the correction of eq 8. 

In addition to our earlier work (9,34), we wish to point out that we can also 
calculate the first-order coefficients c, ( 1 ) by relying entirely on perturbation 
theory. Of course, the result will very much depend on the way we partition the 
Hamiltonian H into the unperturbed part H0 and the perturbation W, H =H0+W. 
Since our zero-order wave function Ιχ) is assumed to represent a general multi-
configurational CI wave function, it is easier to employ the Epstein-Nesbet (EN) 
type perturbation theory. For this purpose we choose the unperturbed 
Hamiltonian H0 as follow 

#o = Ed Ιχ) <χΐ + Σ . € ^ Hu ΙΦ,) (ΦΑ (12) 

where Ha is the diagonal CI matrix element (Φ,·Ι// ΙΦ/>, implying the perturbation 
W = H-H$ This partitioning is somewhat reminiscent of that used by Gershgorn 
and Shavitt in their ^-approximation (44). 

We now easily see that 

Ho Ιχ) = Eci Ιχ) and H0ΙΦ,) = Hs »,>, (13) 
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so that Ci \ as given by the standard PT, is 

= (Φι \W\%) /(Eci - H:d = <Φ/ Iff Ιχ) / (Eci -H^. (14) 

The second-order PT energy is then 

£(EN,2) = I | W S ΚχΙΛΓ ΙΦ,>Ρ/(£α " Hu). (15) 

In the following, we shall compare the energies given by eq 10 and eq 15. 

Returning now to our interpretation of the asymmetric energy expression eq 
6, we can also write Β as the standard C C energy plus a correction. Considering, 
without any loss of generality, the CCSD or R M R CCSD Ansatz, we find that in 
both cases we have 

5 = ^ α + ( χ ΐ / ΐ Φ 0 ) - 1 Σ , > ( 2 ) <%ΐ€ΓΙΦ,> <Φ,Ι<Γ Γ#/ΐΦο>, (16) 

where k > (2) implies that the sum extends over higher than doubly excited 
configurations. The detailed derivation, as well as an explicit form of eq 16, is 
given elsewhere (34) [cf. also (31,32)]. Here we only point out that the excitation 
order of configurations in the C C wave function βτ\Φ^ is either identical or 
higher than the excitation order of ΙΦ*). This implies that unless the CI wave 
function Ιχ) contains higher than doubly excited configurations, the energy S is 
identical to the standard CCSD or R M R C C S D energy. Thus, if we write 

l%> = 1% (0)) + \%(S)) + \%(D)) +1. ' Ci ΙΦ,·), (17) 

where the first three terms on the right hand side represents the zero-, singly-, 
and doubly-excited components of Ιχ) relative to ΙΦ0) , while the primed sum in 
the last term involves all higher than doubly-excited configurations that are 
contained in Ιχ) , eq 16 becomes 

B = Ecc + <χΙ eT ΙΦοΓ1 Σ.' et τ^(2) (Φ/1 eT ΙΦ*> <Φ*Ι e'τ Η / ΙΦ 0). (18) 

Note that ΙΦ*) is basically fixed by ΙΦ,) (all particle-hole labels of ΙΦ*) must be 
identical to some of the particle-hole labels of ΙΦ/)). Hence, the summation in eq 
18 extends only over higher than doubly excited configurations in Ιχ). 
Depending on the choice of Ιχ) , the number of higher than doubles in Ιχ) can be 
rather small. 
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Although the energy £, as given by eq 6, may be interpreted as the corrected 
CI or C C energy, eq 8 or eq 18, respectively, the summations in these 
expressions extend over two very different domains: In eq 8 the sum extends 
over the interacting space of *Mt, while in eq 18 it extends over a subspace of M 
which contains higher than doubly-excited configurations. The size of the 
interacting space of M scales, generally, as the size of the space M itself, times 
the factor n4 (n being the size of basis set). For example, when Ιχ) represents a 
single Hartree-Fock configuration, its interacting space contains all singles and 
doubles. When Ιχ) is an SR CISD wave function, its interacting space contains 
all triples and quadruples. Thus, when calculating the energy Β as a correction to 
the C C energy, eq 18, we in fact account for the effect of the interacting space 

of W, which explicitly appears in eq 8, by considering only those 
configurations that are within the space M itself. 

Obviously, when ΙΨ) is the exact F C C or Ιχ) the exact FCI wave function, 
the energy Β is exact. Of course, in practice, both ΙΨ) and Ιχ) will be 
approximate. In particular, we restrict ΙΨ) to the CCSD or R M R CCSD case. 
Then the quality of the energy Β depends primarily on the choice of the CI wave 
function Ιχ). For practical reasons, we must try to keep the number of higher than 
double excitations in Ιχ) as small as possible. This suggests that we choose a 
multireference-type CI wave function for Ιχ). In this way we can also account for 
the nondynamic correlation. In the following, we thus focus our attention on M R 
CISD wave functions as Ιχ). These can be either the zero-order wave functions 
obtained by diagonalizing the Hamiltonian within the M-configurational 
reference space MQ, or the M R CISD wave functions using %b as the model 
space. 

When Ιχ) is an MR-CI-type wave function, the energy expression given by 
eq 8 has a very simple interpretation. We know that the MR-CI-type wave 
function can efficiently describe the nondynamic correlation while the C C 
Ansatz, even at the CCSD level, can very effectively account for the dynamic 
correlation. Thus, by combining an M R CI and C C Ansâtze, we should be able 
to account for both the dynamic and nondynamic correlations. The energy £, as 
given by eq 8, precisely reflects this fact, with EC\ accounting for the 
nondynamic correlation and the second term on the right hand side, which 
involves the C C Ansatz, for the dynamic one. 

As already mentioned above, there are several ways in which to exploit the 
energy expression for B. For example, we can use either the CCSD or R M R 
CCSD Ansatz, while the CI wave function Ιχ) may be of the SR or M R type. In 
the latter case, it can be either a simple M-configurational CI wave function, or 
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an M R CISD wave function based on the M-reference space It is beyond the 
scope of this article to explore all these possibilities and to assess their 
performance. 

We thus focus here on the case of the C C S D Ansatz for ΙΨ) and the M R 
CISD wave function for Ιχ). The reference space ^b= Span{l<I>i)} is referred to 
as the zero-order space, and all singles and doubles from %b span the first-order 
interacting space Hence, when Ιχ) is an M R CISD wave function, the 
summations in eq 8 or eq 18 extend over all configurations in the second-order 
interacting space of We will then compare two distinct ways that take into 
account the second-order interacting space, namely we will compare the energy 
5, eq 8 or eq 18, which exploits the CCSD Ansatz, with the energy calculated by 
using eq 15 that is based on the E N PT and the M R CISD wave function Ιχ). 

We shall employ the following acronyms to designate the methods used: 
When the reference space %b involves M configurations, dim{^b}= M , we 
designate it by M R (e.g. 2R, 4R, 8R, etc.). When ΙΨ) is a CCSD and Ιχ) is an 
MR-CISD wave function, the approach is designated by CCSD-[MR]. When Ιχ) 
is an M R CISD wave function and eq 15 is employed to calculate the second-
order E N PT energy, the corresponding total energy is referred to by the 
acronym MR-CISD+EN(2). 

Illustrative Examples 

We first consider the standard double-zeta (DZ) model of the HF molecule. 
Relying on the minimal 2-electron/2-active-orbital space, we employ both the 2R 
space spanned by ΙΦ0) = Ισασβ) and ΙΦι) = Ισ*ασ*β), and the 4R space spanned 
by ΙΦ0), ΙΦι), ΙΦ2) = ϊσασ*β), and ΙΦ3) = Ισ*ασβ). In Table IV, we list the FCI 
energies for the five geometries (namely for R=Re= 1.733 bohr, l.5Rg, 2Rei 2.5Re, 
and 3Re), and the energy differences relative to the FCI as obtained with the 
CCSD, 2R-CISD, 2R-CISD+EN(2), CCSD-[2R], and with 4R-CISD, 4R-
CISD+EN(2), and CCSD-[4R] methods. 

The CCSD error increases from 1.6 millihartree (mhartree) at Re to 11.6 
mhartree at 3Re, an increase of about 10 mhartree. The 2R-CISD error increases 
by about the same amount. The 4R-CISD method performs better, and its errors 
are within the 5.7—7.5 mhartree range. With the second-order E N perturbation 
corrections to a small M R CISD wave function, we also get good results. For 
2R-CISD+EN(2), the deviations are less than 1 mhartree, and for 4R-

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

2

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



24 

CISD+EN(2), the errors range from 0.75 to 1.2 mhartree. In both cases, the MR-
CISD+EN(2) energy overestimates the FCI energy, as is usual for the E N PT. 

When we calculate the CCSD energy by projecting onto the 2R-CISD or 
4R-CISD wave function, the resulting CCSD-[2R] and CCSD-[4R] energies 
differ very little one from the other and their deviations from the FCI are about 
1.3—3.1 mhartree. As we have pointed out above, the CCSD-[MR] energy can 
also be viewed as the M R CISD energy corrected by exploiting the CCSD 
Ansatz and relying on the second-order interacting space, eq 8. Thus, it is not 
surprising that both the CCSD-[MR] and MR-CISD+EN(2) energies behave in a 
similar way. 

Table IV. The total FCI energies (in hartree) and the energy differences 
relative to FCI, E-E(FCI) (in mhartree), for the DZ model of the HF 

molecule, as obtained with various methods (see the text for the 
definition of acronyms). All electrons were correlated. Re = 1.733 bohr. 

Method Re 1.5Re 2Re 2.5Re 3Re 

Total energy Ε [reported as -(£4-99)] 
FCI 1.160307 1.092501 1.021711 0.992698 0.985279 
Relative energy E-E (FCI) 
CCSD 1.633 3.046 6.049 9.701 11.597 
2R-CISD 5.775 6.694 7.954 11.666 15.026 
2R-CISD+EN(2) -0.814 -0.758 -0.816 -0.597 -0.569 
CCSD-[2R] 1.450 1.717 2.023 2.646 3.091 

4R-CISD 5.673 6.601 6.859 7.239 7.494 
4R-CISD+EN(2) -0.742 -0.751 -1.078 -1.213 -1.237 
CCSD-[4R] 1.316 1.672 2.282 2.820 3.037 

As the second example, we consider the N2 molecule. In all CI and C C 
calculations, we keep the Is core orbitals frozen and eliminate the corresponding 
top two virtual orbitals. The results are collected in Table V . As is well known, 
this example is qualitatively different from the preceding one, since in contrast to 
HF, the N 2 CCSD PEC has a "hump" between l.6Re and 2Re (Re = 2.068 bohr), 
(cf. Table V) . 

Considering the direct product of three 2-electron/2-orbital spaces 
corresponding to the orbital pairs (σ, σ*), (π*, πχ*), and (π,,, π / ) , we obtain eight 
configurations: ΙΦ0) = Ισ 2 πχ

2 π / ) , ΙΦ,) = Ισ 2 π / π χ* 2), ΙΦ2) = Ισ 2 π , 2 < 2 ) , ΙΦ3) = 
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Table V. The total FCI energies (in hartree) and the energy differences 
relative to FCI, E-E(¥Cl) (in mhartree), for the DZ model of the N 2 

molecule, as obtained with various CI and CC methods (see the text for 
the definition of acronyms). All electrons except Is were correlated 

and Re = 2.068 bohr. The last row is a shifted CCSD-[8R] potential. 

Method Re 1.25Re L5Re 1.75Re 2Re 2.5Re 3Re 

Total energy Ε [reported as -(£+108)] 
FCI 1.10512 1.05463 0.95073 0.88991 0.86824 0.86016 0.85890 
Relative energy E-E (FCI) 
CCSD 8.29 19.06 33.55 17.71 -69.92 -142.18 -155.91 
SR-CISD 26.64 49.20 90.11 147.55 210.90 304.96 357.38 
SR-CISDT 18.17 39.02 74.30 125.42 181.99 267.60 317.27 
SR-CISDTQ 1.38 5.12 13.94 26.93 39.36 55.69 63.50 
2R-CISD 23.57 48.21 78.66 115.57 150.20 158.11 161.28 
4R-CISD 13.24 19.81 27.52 39.40 55.25 76.55 85.56 
8R-CISD 13.17 18.99 21.79 25.91 31.11 36.42 37.66 
2R-CISD+EN(2) -3.65 -3.89 -13.03 -19.98 -26.89 -128.32 -170.39 
4R-CISD+EN(2) -1.07 -0.36 2.22 8.41 15.79 23.24 26.10 
8R-CISD+EN(2) -1.07 -0.29 2.05 5.46 8.35 10.77 11.48 
CCSD-[2R] 8.26 18.61 29.88 14.71 -40.48 -72.22 -52.19 
CCSD-[4R] 4.99 8.61 13.04 14.35 9.04 13.02 16.82 
CCSD-[8R] 4.95 8.17 10.29 10.89 12.19 16.52 17.72 
CCSD-[8R] -1.07 2.15 4.27 4.87 6.17 10.49 11.69 
-6.026 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

2

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



26 

Ισ 2 π / 2 π / 2 >, ΙΦ4> = Κ2 π / σ 2>, ΙΦ5) = Ιπ, 2 π / 2 σ*2>, ΙΦ6) = \πχ

2 π / 2 σ*2>, and 
ΙΦ7> = h,* 2 V 2 σ*2). The 2R space spanned by ΙΦο) and Ι Φ 4 ) describes the 
breaking of the σ bond. The 4R space, Span{IO;): i=0,1,2,3}, describes the 
breaking of two π bonds. Finally, the 8R space that is spanned by all eight 
determinants ΙΦ,·), i = 0-7, represents the minimal model space for the breaking 
of a triple bond. 

While the standard CCSD PEC has a "hump" and grossly underestimates the 
FCI energy in the R - > 00 limit, both SR and M R CISD PECs always 
overestimates the FCI energy in view of their variational character. The quality 
of the CI PECs can be improved by relying on either SR CI, i.e., by considering 
SR CISD, SR CISDT, and SR CISDTQ, or via M R CI by considering 2R CISD, 
4R CISD, and 8R CISD. The results given in Table V clearly show that the latter 
approach is much more effective. Moreover, the computational cost for the 
former sequence of methods scales as n6, w8, and n 1 0 , while for the latter 
sequence the cost scales as 2n6, An6, and %n6. Thus, the M R CISD methods yield 
not only better results, but are also computationally more efficient. In fact, the 
simple 8R CISD method is clearly preferable to SR CISDTQ, thus supporting 
the above given reasoning why we should employ the MR-CI-type wave 
functions for Ιχ). 

Although the 8R CISD results are reasonably good, they are far from being 
satisfactory, since the deviations from the FCI increase from 13 mhartree at Re to 
38 mhartree at 3Re. However, when we compute the energy S, combining 
effectively CCSD with 8R CISD, or even 4R CISD, we get much improved 
results: The CCSD-[8R] errors are within 5—18 mhartree, and the CCSD-[4R] 
ones are within 5—17 mhartree. Yet, using the smallest 2R CISD, the CCSD-
[2R] PEC still shows a hump. 

It is interesting to compare the MR-CISD+EN(2) results with the CCSD-
[MR] ones for M= 2, 4, and 8. Qualitatively, they are very similar. In both cases 
the smallest 2R space is not large enough to eliminate the CCSD hump, even 
though CCSD-[2R] yields a better result than 2R-CISD+EN(2). With 4R and 8R 
spaces, the MR-CISD+EN(2) absolute errors are smaller for R e [Re,1.5Re] than 
CCSD-[MR] ones, but for R > l.5Re, the 4R-CISD+EN(2) error increases much 
faster than the corresponding CCSD-[4R] error. Indeed, over the interval Re^R 
< 3Re, the former one increases by 27 mhartree while the latter one by only 12 
mhartree. With the 8R space, the 8R-CISD+EN(2) and CCSD-[8R] PECs are 
almost identical. In particular, when we shift the CCSD-[8R] PEC by -6.026 
mhartree, so that the 8R-CISD+EN(2) and CCSD-[8R] PECs coincide at Re (see 
the last row of Table V) , the two PECs are separated by no more than 2.5 
mhartree over the entire range of internuclear separations. 
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Summarizing the results for the N 2 molecule, we find that the CCSD-[8R] 
and 8R-CISD+EN(2) methods represent the best approximations amongst those 
considered (cf. Table V) . Both represent a significant improvement over C C S D 
and even over 8R CISD, showing much smaller errors and no hump on their 
PECs. 

IV. Conclusions 

In our earlier work we have examined various ways of accounting for the 
nondynamic correlation in the SR-type C C approaches. Our main aim was 
directed towards the improvement of one- and two-body cluster amplitudes by 
relying on the ecCCSD approach, particularly on R M R CCSD which exploit the 
M R CISD wave function of a modest size as the source of higher than pair 
clusters. The capability of this approach to generate highly accurate 
spectroscopic data was briefly summarized in Sec. II. 

In addition to these amplitude-correcting approaches, we also examine what 
may be referred to as the energy-correcting approaches, not unlike the recently 
pioneered renormalized perturbative corrections for triples, and triples and 
quadruples (31-33). In this spirit, we formulated (9,34) the energy corrections to 
the standard CI and C C energies, combining both approaches which complement 
one another in their ability to account for the dynamic and nondynamic 
correlations. Our approach is based on the standard asymmetric energy 
expression, which may be shown to take the form of either the standard CI 
energy plus a correction or of the standard C C energy plus a correction. In the 
former case, the correction accounts for the interaction between the CI wave 
function and the interacting space of the CI manifold, and is assessed by relying 
on the related C C wave function. In the latter case, the correction arises from 
higher than doubly excited configurations in the CI wave function. 

Although the above outlined idea is generally applicable to any CI and C C 
wave functions, we focus in this paper on a small reference space M R CISD 
wave function and the CCSD Ansatz, exploiting their complementarity in 
handling of correlation effects. The C C S D method accounts very effectively for 
the dynamic correlation, but is rather limited when handling the nondynamic 
one. On the other hand, a small reference space M R CISD can describe well the 
nondynamic correlation, while lacking the flexibility in accounting for the 
dynamic correlation. Hence, by combining both approaches we can benefit from 
their strong points, while overcoming their shortcommings. Our results for the 
HF and N 2 molecules support this claim. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

2

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



28 

By using the asymmetric energy formula that combines the M R CISD and 
C C S D wave functions, one effectively exploits the CCSD Ansatz to evaluate the 
coefficients of configurations that span the M R CISD interacting space while 
dealing only with the SD excited state manifold. These coefficients can also be 
assessed by relying on perturbation theory. However, the interacting space of a 
M R CISD wave function is the second-order interacting space of the reference 
space. For an M-dimensional reference space, the size of the first-order 
interacting space scales as Μ η4, while the size of the second-order interacting 
space scales as Μ η 8 . Thus, using the C C S D Ansatz to assess the effects of the 
M R CISD interacting space turns out to be a viable alternative, as we have 
shown in this study. Currently, we are investigating the possibility of combining 
the C C methods and M R perturbation theory that employs a small model space 
as an unperturbed problem. The results will be published elsewhere. 
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Chapter 3 

Method of Moments of Coupled-Cluster Equations: 
A New Theoretical Framework for Designing 

"Black-Box" Approaches for Molecular Potential 
Energy Surfaces 

Piotr Piecuch1, Karo l Kowalski1, Ian S. O. Pimienta 1, 
and Stanislaw A. Kucharski 2 

1Department of Chemistry, Michigan State University, East Lansing, MI 48824 
2Institute of Chemistry, Silesian University, Szkolna 9, 40-006 Katowice, Poland 

The recently proposed method of moments of coupled
-cluster equations ( M M C C ) is reviewed. The ground
-state MMCC formalism and its excited-state extension 
via the equation-of-motion coupled-cluster ( E O M C C ) ap
proach are discussed. The main idea of all MMCC meth
ods is that of the noniterative energy corrections which, 
when added to the ground- and excited-state energies ob
tained in approximate CC calculations, recover the exact 
energies. Approximate M M C C methods, including the 
renormalized C C S D ( T ) , C C S D ( T Q ) , and C C S D T ( Q ) ap
proaches and the EOMCC-rela ted MMCC(2 ,3 ) method, 
are described and examples of applications of these new 
approaches are given. It is demonstrated that the M M C C 
formalism provides a new framework for designing "black
-box" approaches that give excellent description of entire 
potential energy surfaces at the small fraction of the effort 
associated with multireference calculations. 

© 2002 American Chemical Society 31 
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Introduction 

One of the most important problems in coupled-cluster (CC) 
theory (1 -7) is extension of the existing single-reference CC (SRCC) meth
ods to quasidegenerate and excited states. Potential energy surfaces (PESs) 
of ground and excited states represent a particularly challenging problem. 
The standard CC "black-boxes" for ground electronic states, such as the 
CCSD (CC singles and doubles) approach, and their perturbative triples 
and quadruples extensions, including CCSD[T] (8-10), CCSD(T) (11), 
CCSD(TQf) (It), and CCSDT(Qf) (12), fail to describe bond dissociation 
(cf., e.g., refe 6, 7, 13-20). The response CC methods (21-26) and their 
equation-of-motion CC (EOMCC) analogs (27-30) are capable of provid
ing very good results for excited states dominated by singles (cf., e.g., refe 
27-29, 31-37), but accurate calculations of excited states of quasidegener
ate systems (particularly, excited states having large biexcited components) 
and of entire PESs of excited states with the standard response C C and 
E O M C C approximations, including the EOMCCSD (27-29), 
EOMCCSD(T) (51), EOMCCSD(t) (32), EOMCCSD(T') (32), 
EOMCCSDT-n (31,32), CCSDR(3) (36,37), and CC3 (5^-57) meth
ods, are not possible (cf., e.g., refe 38-41). The genuine multi-reference C C 
(MRCC) approaches of the state-universal type (4,6,42-56) (the SUM-
RCC methods) have showed some promise in studies of molecular PESs (cf., 
e.g., refe 45, 47, 48, 51-53, 56), but the SUMRCC calculations are plagued 
by intruder states (51,52) and by multiple intruder solutions (51,54)- The 
applicability of the valence-universal MRCC methods (4,6,57-60), which 
also suffer from intruder states and unphysical multiple solutions (61,62), 
is limited to vertical excitation energies of atoms and molecules at their 
equilibrium geometries. Thus, in spite of tremendous progress in C C the
ory, which is nowadays routinely used in accurate calculations of various 
equilibrium properties of closed-shell and simple open-shell molecular sys
tems, there is a need for new ideas that would extend the applicability of 
CC methods to entire molecular PESs. 

Several attempts have been made to remove the pervasive failing of the 
perturbative CC approximations at large internuclear separations. The rep
resentative examples include the externally-corrected SRCC me
thods (6,10, 63-74), the active-space SRCC approaches (14,19, 75-86), 
the orbital-optimized SRCC methods (39,87,88), and the perturbative 
C C approaches based on the partitioning of the similarity-transformed 
Hamiltonian (89,90) (see ref 91 for the original idea). Of all these ap
proaches, the reduced MRCCSD (RMRCCSD) method (68-74), which 
uses the multi-reference configuration interaction (MRCI) wave functions 
to extract information about triply and quadruply excited clusters, and 
the active-space CCSDt and CCSDtq methods (19,85,86) and their ear
lier state-selective (SS) CCSD(T) and CCSD(TQ) analogs (14, 75-84) are 
particularly promising. The RMRCCSD approach can be used to success-
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fully describe bond breaking and ro-vibrational term values in the ground 
state (6,68-70,72-74), and to calculate the lowest-energy excited state 
of a given symmetry (71,73). Unfortunately, it is not possible to apply 
the RMRCCSD method to several electronic states of the same symmetry 
and the cost of the MRCI calculations that are used to extract the triply 
and quadruply excited clusters may significantly increase the cost of the 
RMRCCSD calculations. The CCSDt and CCSDtq methods and their SS-
CCSD(T) and SSCCSD(TQ) analogs, in which higher-than-doubly excited 
components of the cluster operator are selected through active orbitals, 
have fewer Umitations. The CCSDt or SSCCSD(T) and CCSDtq or SS-
CCSD(TQ) approaches are less expensive than the MRCI methods and can 
easily be extended to excited states of the same or different symmetries via 
the E O M C C formalism (40,41)- The active-space C C approaches proved 
to be successful in describing quasidegenerate ground states (79,80,85), 
ground-state PESs involving bond breaking (14,19,81,84-86), highly ex
cited vibrational states (86), and ground-state property functions (83) 
at the fraction of the computer cost associated with the parent CCSDT 
(CC singles, doubles, and triples) (92,93) and CCSDTQ (CC singles, 
doubles, triples, and quadruples) (79,94-96) approaches. The E O M C C 
extension of the CCSDt method, termed EOMCCSDt (40,41), in which 
relatively small subsets of triexcited components of cluster operator Τ and 
E O M C C excitation operator R are selected through active orbitals, proved 
to be capable of providing excellent description of excited states domi
nated by doubles and states having large triexcited components (includ
ing excited states of molecules whose ground states are quasidegenerate). 
The EOMCCSDt approach proved to be successful in describing entire 
excited-state PESs at the fraction of the computer cost associated with 
MRCI and full EOMCCSDT (EOMCC singles, doubles, and triples) (41) 
calculations (40,41, 97). 

The active-space SRCC methods and their E O M C C extensions are very 
promising and we will continue to develop them. They are relatively easy to 
use, although, in analogy to multireference approaches, they require choos
ing active orbitals, which in some cases may be a difficult thing to do. From 
this point of view, the active-space CC methods are not as easy-to-use as 
the noniterative perturbative methods, such as CCSD(T) or CCSD(TQf), 
or their response CC or EOMCC extensions. Undoubtedly, it would be de
sirable to have an approach that combines the simplicity of the noniterative 
CC schemes with the effectiveness with which the iterative active-space C C 
and E O M C C methods, such as CCSDt and EOMCCSDt, describe ground-
and excited-state PESs. 

It has recently been demonstrated that the applicability of the ground-
state SRCC approaches, including the popular noniterative approximations, 
such as CCSD(T), can be extended to bond breaking and quasidegenerate 
states, if we switch to a new type of the SRCC theory, termed the method of 
moments of CC equations (MMCC) (7,16-18). It has further been demon-
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strated that the MMCC theory can be extended to exeited-state PESs, if we 
combine the MMCC and EOMCC (98) or M M C C and SUMRCC (18) for
malisms. The main idea of the ground-state M M C C formalism (7,16-18) 
is that of the noniterative energy correction which, when added to the en
ergy obtained in approximate SRCC calculations, such as CCSD or CCSDT, 
recovers the exact (full CI) energy. The noniterative energy corrections 
defining the EOMCC-based MMCC theory (98), added to the energies ob
tained in approximate EOMCC (e.g., EOMCCSD) calculations, recover the 
full CI energies of excited states. It has been demonstrated that the M M C C 
formalism allows us to renormalize the existing noniterative SRCC approx
imations, such as CCSD[T], CCSD(T), CCSD(TQ f ) , and CCSDT(Q f ) , so 
that they can correctly describe entire ground-state PESs (7,16-20). It 
has also been demonstrated that the excited-state M M C C theory, based 
on the E O M C C method, allows us to introduce a new hierarchy of simple 
noniterative CC approximations that remove the pervasive failing of the 
EOMCCSD and perturbative EOMCCSDT approximations in describing 
entire excited-state PESs (98). 

In our view, the MMCC theory represents an interesting development in 
the area of new CC methods for molecular PESs. The MMCC-based renor-
malized CCSD(T), CCSD(TQ), and CCSDT(Q) methods and the noniter
ative MMCC approaches to excited states provide highly accurate results 
for ground and excited-state PESs, while preserving the simplicity and the 
"black-box" character of the noniterative perturbative CC schemes. In 
this chapter, we review the MMCC theory and new CC approximations 
that result from it and show the examples of the M M C C and renormalized 
CC calculations for ground and excited state PESs of several benchmark 
molecules, including HF, F 2 , N 2 , and C H + . The review of the previously 
published numerical results (7,16-20) is combined with the presentation 
of new results for the C 2 , N 2 , and H 2 O molecules. 

The Method of Moments of Coupled-Cluster 
Equations: The General Formalism 

We begin our review of the MMCC theory with the ground-state for
malism. The extension of the MMCC formalism to the E O M C C case is 
discussed in the next subsection. 

The Ground-State Theory 

In the SRCC theory, we represent the ground-state wave function of an 
iV-electron system, described by the Hamiltonian if, in the following way: 

| Φ ο ) = β τ | Φ ) , (1) 
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where Τ is the cluster operator and |Φ) is an independent-particle-model 
( IPM) reference configuration (usually, the Hartree-Fock determinant). In 
the exact theory, Γ is a sum of all of its many-body components, including 
the iV-body one. In the standard S R C C approximations, the many-body 
expansion of Τ is truncated at some excitation level. 

Let us consider the standard S R C C approximation (hereafter referred 
to as method A), in which Τ is approximated as follows: 

niA 
T w T ( A ) = Y^Tn, (2) 

n=l 

where Tn, η = 1, . . . , m A, are the many-body components of Τ included in 
the calculations and ΤΠΑ < Ν (m A = 2 defines the C C S D method, m A = 3 
defines the C C S D T method, etc.). The system of equations for the cluster 
amplitudes defining the Tn components has the following form: 

φ(*>#< Λ>|Φ)=0, (3) 

where 
HW=e-TWHeTW =(HeTW)c (4) 

is the similarity-transformed Hamiltonian of the C C theory, subscript C 
designates the connected part of the corresponding operator expression, 
and Q(A) is the projection operator onto the subspace of all excited config
urations described by T^A\ i.e., 

τη A 

<?(Λ) = Σθη, (S) 
n=l 

where Qn represents the projection operator onto the n-tuply excited con
figurations relative to |Φ). Once the system of equations, eq (3), is solved 
for T(A\ the energy is calculated using the formula 

E{

0

A) = ( Φ | # ( Λ ) | Φ ) . (6) 

The main idea of the M M C C theory is as follows: After analyzing the 
relationships between multiple solutions of the nonlinear equations repre
senting different levels of the C C theory (CCSD, C C S D T , etc.), Piecuch and 
Kowalski have recently derived a formula for the noniterative correction 6QA^ 
which, when added to the energy obtained in approximate S R C C calcula
tion, E^A\ eq (6), recovers the full CI energy E0. We obtain (7,16-18), 

Ν η 

δ{

0

Α) = Ε ο - 4 Α ) = Σ Σ (*o\QnCn^(mA)Mfc(mA)m/ 

<Φο|β τ ( Α ) |Φ>, (7) 
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where 
Cn-J(mA) = (eT<A))n.i (8) 

represents the (n — j)-body component of the wave operator eT(A), defining 
the SRCC approximation A, and 

Μ?°(πιΑ)\Φ) = (&%\Φ) = QjiH^m (9) 

are the SRCC equations, in which Τ = T^A\ projected onto the j-tuply 
excited configurations relative to |Φ). Here and elsewhere in the present 
chapter, we use a notation in which Oj represents the j-body component 
of operator O. The original proof of formula (7) has been based on the 
Fundamental Theorem of the Formalism of β-Nested Equations (7), which 
describes relationships between multiple solutions of the SRCC equations 
representing different levels of theory (CCSD, CCSDT, etc.). An alternative 
(and more elementary) derivation of eq (7), based on the M M C C functional 

A[#] = < » | ( 1 Γ - 4 Α ) ) β τ ( Α ) | Φ > / ( Φ | β τ < Λ ) | Φ > , (10) 

introduced in ref 16, has been given in Appendix A of ref 16. 
Equation (7) is the basic equation of the ground-state M M C C formal

ism. The main element of eq. (7) are the SRCC equations, in which 
Τ = T^A\ projected on the j-tuply excited configurations with j > m A, i.e., 
the SRCC equations projected onto the excited configurations not included 
in approximate method A. These readily available quantities represent the 
generalized moments of coupled-cluster equations (for a discussion of the 
relationship between the method of moments of Krylov (99) and the CC 
theory, see ref 100). Indeed, if |#j*> designate the j-tuply excited configu
rations relative to |Φ), then 

Mfc(mA)m = £ MTÀJ)(mA) , (H) 
J 

where 
Mf<(i\mA) = {*f\H^\*) (12) 

are the SRCC equations projected on excited configurations | Φ ^ ) . AU 
this means that if we, for example, want to correct the results of CCSD 
calculations (the mA = 2 case) and recover the full CI energy by adding 
the noniterative correction <$Q̂  to the CCSD energy, we need to calculate 
the generalized moments of the CCSD equations, i.e., the CCSD equations 
projected on triples, quadruples, pentuples, and hextuples, or 

M f c ( 2 ) ^ ) = Q j ( i f e T ' + T 2 ) c W , (13) 
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where Γι and T 2 are the singly and doubly excited clusters resulting from 
the CCSD calculations and j = 3 - 6 (Mf° (2)\Φ) = 0 for j > 6). 

The correction SQA^ also depends on the exact wave function |Φο), which 
we do not know. We can use, however, very simple guesses for |*o)> 
obtained in inexpensive many-body perturbation theory (MBPT) or CI 
calculations, and calculate approximate values of δ$Λ^. The renormalized 
CCSD(T), CCSD(TQ), and CCSDT(Q) methods, mentioned in the Intro
duction, are based on the MBPT(2)-like guesses for |f0> (7,16,17). The 
difference between a new hierarchy of approximations that is obtained in 
this way and the standard approaches to electron correlation is in that in 
computing SQA\ we focus on the leading correction to the energy obtained 
in an approximate CC calculation, such as CCSD; in all conventional ap
proaches, we are only trying to correct the results of the Hartree-Fock (or 
some other IPM) calculations without having any non-trivial relationship 
with full CI. Thus, the MMCC energy formula, eq (7), gives us a new way 
of controlling the quality of CC results. In M M C C calculations, we are not 
interested in improving the Hartree-Fock (or other IPM) description by 
simply adding corrections due to correlation, with the hope that the more 
we add the better. We are rather dealing with the remanent error that 
occurs in approximate CC calculations by directly considering the quantity 
of interest, i.e., Ε - E^ (e.g., Ε - ECCSO, where ECCSO is the CCSD 
energy; cf. ref 91 for very useful remarks). This is particularly impor
tant in situations, where standard arguments originating from M B P T fail 
due to divergent behavior of the MBPT series (as is the case in studies of 
quasidegenerate states and bond breaking). Interestingly enough, all ap
proximate approaches resulting from eq (7) correctly describe a separation 
of a given Ν-electron system into fragments consisting of no more than m A 
electrons each, independent of a particular approximation used to define 
|Φο) (7,16). This means, for example, that each M M C C approximation, 
in which we correct the CCSD results, provides a correct description of a 
separation of a given iV-electron system into non-interacting electron pairs, 
independent of the form of |*o). 

The Excited-State Theory 

The MMCC theory can be extended to excited states. Kowalski and 
Piecuch have proposed two such extensions. In the first one, the M M C C 
theory is combined with the genuine MRCC formalism of the state-universal 
type. The main idea of the resulting MM-SUMRCC approach (18) is that 
of the noniterative energy corrections which, when added to the eigenvalues 
of the effective Hamiltonian defining the approximate SUMRCC method, 
such as SUMRCCSD (46,49,53,55), recover the exact energies of the 
electronic states of interest. In complete analogy to the single-reference 
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case, the noniterative corrections to the SUMRCC energies are expressed 
in terms of the generalized moments of the SUMRCC equations (18). In the 
second extension of the MMCC formalism to excited states, introduced in 
ref 98 and overviewed here, we correct the results of approximate E O M C C 
(e.g., EOMCCSD) calculations. 

In the E O M C C theory, the excited states |Φκ) of a given iV-eleetron 
system are represented in the following way: 

|Φκ) = Λκ|*ο>, |Φ0> = β τ |Φ) , (14) 

where RK is the excitation operator generating excited state |Φ#) from 
the SRCC ground state |Φο). For the consistency of our presentation, the 
excitation operator RK is defined as a unit operator for Κ = 0. The excited-
state energies Εκ and the corresponding operators RK are obtained by 
diagonalizing the similarity-transformed Hamiltonian H = e~ T i fe T , where 
Τ is the cluster operator determined by solving the SRCC equations. In 
the exact E O M C C formalism, the cluster operator Τ and the excitation 
operators RK are sums of all relevant many-body components. In the 
standard EOMCC approximations, the many-body expansions of Τ and 
RK are truncated at some excitation level. 

In analogy to the ground-state case, let A represent the stan
dard E O M C C approximation, in which the many-body expansions of Τ 
and RK are truncated at the ra^-body components (ΤΠΑ < Ν), SO that 

τη A 
T~T{A) = £ Γ η ) ( 1 5 ) 

n=l 

* * s J # > = J # J + *<!&.., (16) 

with the "open" part of R^ defined as 

τη A 

As usual, Tn and ifo, n are the ra-body components of and \ re
spectively. In the EOMCCSD method, mA = 2; in the EOMCCSDT ap
proach, niA = 3, etc. The cluster operator is obtained by solving 
the system of energy-independent equations represented by eq (3), whereas 
the excitation operators R^ are obtained by diagonalizing the similarity-
transformed Hamiltonian H^A\ eq (4), in a space spanned by reference |Φ) 
and excited configurations included in and R$\ We obtain, 

(P + Q<A>)(/rW - E{A))R{A)\i) = 0, (18) 
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where Ρ = |Φ)(Φ|, is defined by eq (5), and Ef£* is the energy of 
state \Φκ) obtained in the calculations with the E O M C C approximation 
A. Notice that eq (18) reduces to the ground-state SRCC equations, eqs 
(3) and (6), when Κ = 0 (recall that I^A) = 1). 

The main idea of the excited-state M M C C theory (98) is that of the 
noniterative energy corrections 

δ ^ = Ε κ - Ε ^ \ (19) 

which, when added to the energies of excited states, Ej£\ obtained in 
approximate EOMCC (method A) calculations, recover the corresponding 
exact energies Εκ- By considering the excited-state extension of functional 
Λ[Φ], eq (10), i.e., the expression 

Λ[Φ] = <Φ|(# - ^ ) Λ ^ 6 Τ ( Α ) | Φ ) / ( Φ | Λ ^ ) 6 Τ ( Λ ) | Φ > , (20) 

which satisfies the property 

Λ[ΦΚ] = ^ -4 Α ) Ξ4 Α ) . (21) 
we can derive the following formula for the energy corrections (98): 

4A) = Σ Σ ^κ\0η€η-ΜΑ)Μΐο^{τηΑ)\Φ)Ι 

( Φ κ | / 4 Λ ) β τ < Α ) | Φ > , (22) 

where Cn-j(mA) is defined by eq (8) and 

M%fcc(mA)\*) = ( # * > Λ £ > ) , | Φ > = QiiH^R^m. (23) 

In analogy to the ground-state case, the Μψ^Λ0€(πΐΑ )|Φ) quantities 
appearing in eq (22) are related to the generalized moments of the E O M C C 
equations defining method A, i.e., to the left-hand side of the EOMCC 
eigenvalue problem involving (the H(A)R^\$) term), projected on 
the j-tuply excited configurations with j > m A- We can immediately write, 

j 
where 

MEOUCC,U){mA) = { φ ω | ( £ ( Α ) Λ ( Α ) ) | Φ ) ( 2 5 ) 

are the generalized moments of the E O M C C equations defining method A. 
It can be shown (98) that the generalized moments M^^CC^(ΊΎΙΑ) with 
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j > mA that define M ^ M C C ( m A ) | * ) through eq (24) and that are needed 

to calculate correction δ$\ eq (22), are given by the following expression: 

Σ (*f\(H(

P

A)R(iï-P)DCw> (26> + 

where rj££ is the coefficient at reference |Φ) in the many-body expansion 

of the K-th right eigenvector of H^A\ / ^ ( Φ ) . Here, subscripts "open," 
C, and DC refer to the open (i.e., having external lines), connected, and 
disconnected parts of a given operator expression. In particular, 

= ( t f e T ( A ) ) c > o p e „ = e~T(A)HeTiA) - E<f\ (27) 

where is the ground-state energy obtained with method A. Equa
tion (26) becomes very useful in obtaining the explicit formulas for the 
M^™CC'^\mA) moments in terms of matrix elements of the similarity-
transformed Hamiltonian H^A\ which can be used in computer implemen
tations of approximate M M C C methods discussed in the next section. 

Equation (22), with Cn^{mA) defined by eq (8) and Μ ^ ° > * 0 0 ( ™ Λ ) | Φ } 
defined by eqs (24) and (26), defines the excited-state M M C C theory. In 
analogy to the ground-state case, the main elements of eq (22) are the gen
eralized moments of the E O M C C equations defining approximate method 
A, i.e., the E O M C C equations, in which Τ is approximated by and 
RK is approximated by R^K \ projected onto the excited configurations not 
included in method A. For example, if we want to correct the excited-state 
energies obtained in E O M C C S D calculations (the mA = 2 case) and re
cover the full C I energies Εκ, we must calculate the E O M C C S D equations 
projected on triples, quadruples, etc., or 

M E O M C C ( 2 ) J # ) = Q . ( ^ C C S D ^ C C S D ^ ^ ( 2 G ) 

with j > 2, where 
# C C S D = eHTi+T2)HeT^T2 ( 2 9 ) 

is the similarity-transformed Hamiltonian of the E O M C C S D approach, T\ 
and T 2 are the singly and doubly excited clusters resulting from the C C S D 
calculations, and 

i$PSD = R k q + + = R k q + flCCSDn ( 3 0 ) 

is the E O M C C S D excitation operator RK- The corrections δ^ also de
pend on the exact wave functions | Φ κ ) , which we do not know. However, 
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as in the ground-state MMCC theory (7,16-18), we can use simple guesses 
for I p r o v i d e d , for example, by inexpensive CI calculations, and ob
tain excited-state energies that are much closer to the full CI energies than 
the approximate EOMCC energies E*£\ The only requirement that eq 
(22) imposes on the approximate form of |Φκ) , to make it usable for the 
calculation of δ^\ is the presence of higher-than-ra^-tuply excited con
figurations in |Φκ) (e.g., triples in the ΤΠΑ = 2 case). The state-selective 
character of the MMCC formula for the energy corrections δ*χ \ eq. (22), 
must be emphasized, too. By having some approximate form of |ΦΑ·) , we 
can calculate a given correction δ^ without considering other states. 

Finally, it should be noticed that eq (22) represents a natural generaliza
tion of the ground-state MMCC formula, eq (7), to excited states. Indeed, 
in the ground-state (K = 0) case, RK is a unit operator, so that ΓΚ,Ο = 1 
and RKJ = 0 for j > 0 or RK,open = 0. In consequence (see eq (26)), 

MEOUOC,U){mA) = ( # U ) | S M ) | # > = MCjC'U)(mA), (31) 

C C (?) 

where Mj (ΤΠΑ) are the generalized moments of the SRCC equations 
defining method A (see eq (12)). 

Approximate M M C C Methods: The M M C C ^ , mB) 
and Renormalized C C Schemes 

The hierarchy of the MMCC(TUA,TUB) approximations is obtained, when 
we restrict the wave functions |Φ/<-) in eqs (7) and (22) to functions that 
do not contain higher-than-raβ-tuply excited configurations in the corre
sponding CI expansions. The nonzero values of corrections are ob
tained only when TUB > m A- The energy expressions describing the result
ing MMCC(ra>i,rafî) approximations are as follows (7,16,17,98): 

Εκ(τηΑ,τηΒ) = E(A) + δκ(τηΑ,πιΒ), (32) 

where the formula for the ground-state (K = 0) correction 6o(mA,mB) is 
TUB η 

So(mA,mB) = Σ Σ ^o\QnCn-j{mA)Mfc{mAmi 
n=mA+l j=mA+l 

<*ο |β Γ < Α , |Φ) , (33) 

and 
TUB η 

δκ(τηΑ,τηΒ) = Σ Σ ^κ^ηΟη-ΜΑ)Μ^ΜΟΟ(τηΑ)\Φ)/ 
n=mA+l j=mA+l 

<*K|i4 A )e T < A , |*>, (34) 
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for excited states (the Κ > 0 case). As explained earlier, the Mf°{mA)\$) 
and Μψ^Μοα(τηΑ)\Φ) quantities, j = mA + 1, - . . ,ma, entering eqs (33) 
and (34), respectively, can be expressed in terms of the higher generalized 
moments of the approximate CC and E O M C C methods, commonly labeled 
as method A. When ms = Ν and when wave functions |Φχ) are exact, we 
obtain the exact MMCC theory described in the previous section. 

The Ground-State MMCC(m>t, TUB) Methods and the Renormal-
ized C C S D ( T ) , C C S D ( T Q ) , and C C S D T ( Q ) Schemes 

Three choices of (τηΑ,πΐΒ) are particularly useful in the ground-state 
case, namely, (mA,mB) = (2,3), (2,4), and (3,4). These three choices 
lead to the MMCC(2,3), MMCC(2,4), and MMCC(3,4) schemes. In the 
MMCC(2,3) and MMCC(2,4) ground-state methods, we add correction δ0 

to the CCSD energy, J 5 e c s i ) , whereas in the MMCC(3,4) approach we 
correct the CCSDT energy, E C C S O T . We obtain (7,16,17), 

E0(2,3) = ECCSO + <»o|Qs M 3 (2) |#) / ( t 0 | e T l + T 2 |*) , (35) 

E0(2,4) = £ C C S D + (*o|{Q 3M 3(2) 

+Q 4 [M4(2) + Τ 1 Μ 3 ( 2 ) ] } | Φ ) / ( Φ 0 | β Τ ι + Τ 2 | Φ ) , (36) 

£o(3 ,4 ) = £ C C S D T + <* 0 |Q 4 M 4 (3)|*)/(f o |e T l + T 2 + T 3 |#) , (37) 

where 
Μ 3 (2 ) |Φ>= £ * ί $ ( 2 ) Ι * # > . (38) 

i<j<k 
a<b<c 

Μ 4(2)|Φ> = £ Μ$&(2)\Φ$&), (39) 

i<j<k<l 
a<b<c«t 

and 
Μ 4 ( 3 ) | Φ ) = £ M$g(3)\*$t), (40) 

i<j<k<l 
a<b<c<d 

with 
Mft{2) = < Φ $ | (HeT>+T*)c |Φ) (41) 

and 
M$&{2) = (HeT*+T% |Φ> (42) 
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representing the projections of the C C S D equations on triply and quadruply 
excited configurations, respectively, and with 

M&fQ) = (*tk?\ (HeT>+T*+T% | « ) (43) 

representing the projections of the C C S D T equations on quadruply excited 
configurations. Here and elsewhere in the present chapter, we use the stan
dard notation in which i , j , k,l, . . . represent the spin-orbitals occupied in 
|Φ) and a, 6, c, d, . . . are the unoccupied spin-orbitals. 

Different types of the MMCC(2 ,3 ) , MMCC(2 ,4 ) , and MMCC(3 ,4 ) ap
proximations are obtained by making different choices for |Φο) in eqs (35)-
(37) (7,16-18). The most intriguing results are obtained when wave func
tions | Ψ 0 ) are defined by the low-order M B P T . The M B P T - l i k e forms 
of |Φο> lead to the renormalized and completely renormalized CCSD[T], 
CCSD(T), CCSD(TQ), and CCSDT(Q) schemes (7,16-18). As demon
strated below, these new methods represent powerful computational tools 
that remove the failing of the standard CCSD[T] , C C S D ( T ) , C C S D ( T Q ) , 
and C C S D T ( Q ) approximations at large internuclear separations, while 
preserving the simplicity and "black-box" character of the noniterative per
turbative C C approaches. 

The completely renormalized CCSD[T] and CCSD(T) methods (the C R -
CCSD[T] and C R - C C S D ( T ) approaches) are examples of the MMCC(2 ,3 ) 
scheme. If T% and T2 are cluster operators obtained by solving the C C S D 
equations and if designates the three-body component of the M B P T 
reduced resolvent, then the energy formulas defining the CR-CCSD[T] and 
C R - C C S D ( T ) methods are (7,16-18) 

£ C R - C C S D [ T ] _ ECCSO + ^ C C S D [ T ] | Λ ί * 3 ( 2 ) | Φ > / < * C C S D [ T 1 | e T l + T 2 |Φ) (44) 

and 

£ C R - e e S D ( T ) = ^ C C S D + ^ C C S D ( T ) | M 3 ( 2 ) | # ^ ^ C C S D ( T ) j E T 1 + T 2 | # ^ ( 4 5 ) 

respectively, where functions | $ C C S D [ T ] ^ a n ( j | ^ C C S D ( T ) ^ e n t e r i n g eqs (44) 
and (45), are defined as follows: 

| $ C C S D [ T ] ) = [χ + T l + Γ 2 + ng)(yNT2)c]\$), (46) 

| $ C C S D ( T ) } = [ i + T l + T 2 + Ri3)(VNT2)c + 4 3 ) ^ ϊ ι ] | Φ ) . (47) 

We use the usual notation, in which operator Vjv is the two-body part of 
the Hamiltonian in the normal-product form. Clearly, the 

4 3 ) (νΝΓ 2 ) 0 |Φ) = τ | 2 ] |Φ> (48) 

term in eqs (46) and (47) is a C C S D analog of the M B P T ( 2 ) wave func
tion contribution due to triples. Thus, the | * C C S D t T l ) wave function, 
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defining the CR-CCSD[T] approximation, represents a C C analog of the 
MBPT(2)[SDT] wave function. The | # C C S D ( T ) ^ w a v e f u n c t i 0 n uses the 

additional R^VNTI\$) term, which is reminiscent of the extra term that 
distinguishes the CCSD(T) approach from its CCSD[T] analog. If we fur
ther approximate the Μ^ξ(2) C C S D moments in eqs (44) and (45) by their 
lowest-order estimates, i.e., <#?j£|(VjvT 2 )c |$), we obtain the renormalized 
CCSD[T] and CCSD(T) methods, respectively, or the R-CCSD[T] and R-
C C S D ( T ) approaches. The energy expressions defining the R-CCSD[T] and 
R - C C S D ( T ) methods can be given the following form (7,16,17): 

£ R - C C S D [ T ] = £ C C S D + ^ C C S D [ T ] | g 3 (VNT2)C\*) / ( * C C S O l V l + T 2 \ $ ) , 
(49) 

£ R - C C S D ( T ) = ^ C C S D + < $ C C S D ( T ) | Q 3 (vNT2)c\*) / (*CCSO(T^eT*+T2\$) · 
(50) 

The R-CCSD[T] and R-CCSD(T) approaches reduce to the standard 
CCSD[T] and CCSD(T) methods, when the corresponding 
^ c c s D [ T ] | e T 1 + T 2 | # ) a n d < t c c s D ( T ) | 6 T 1 + T 2 | $ ) d e n o m i n a t o r s in the 
R-CCSD[T] and R-CCSD(T) energy formulas are replaced by 1 (7,16,17) 
(as shown in refe 7, 16, both denominators equal 1 plus terms which are at 
least of the second order). The presence of the (* | e T < A ) |Φ) denominators in 
eqs (44), (45), (49), and (50), and in their analogs describing the renormal
ized and completely renormalized C C S D ( T Q ) and C C S D T ( Q ) methods is 
essential for improving poor description of bond breaking by the standard 
noniterative approximations (7,16-20). 

The idea of renormalizing the CCSD[T] and C C S D ( T ) methods can be 
extended to the C C S D ( T Q ) and C C S D T ( Q ) cases. The completely renor
malized CCSD(TQ) methods, termed C R - C C S D ( T Q ) , a and 
C R - C C S D ( T Q ) , b , are examples of the MMCC(2 ,4 ) scheme, in which we 
correct the C C S D results by considering the projections of the C C S D equa
tions on triply and quadruply excited configurations. The C R - C C S D ( T Q ) , a 
and C R - C C S D ( T Q ) , b energies are calculated as follows (7,16,17): 

£ C R - C C S D ( T Q ) , x = ECCSO + ^CCSD(TQ),x| [M9(2) + TXMZ(2) 

+ M 4 ( 2 ) ] | # ) / ( * C C S D ( T Q ) ' x | e T l + T 2 | $ ) (x = a,b), (51) 

where 
| $ C C S D ( T Q ) , a ^ _ j $CCSD(T)^ + | Τ 2 Τ 2

( 1 ) | Φ ) (52) 

and 
| f fCCSD(TQ) fb ) = | $ C C S D ( T ) ) + i j t f ^ ( 5 3 ) 

with representing the first-order M B P T estimate of T 2 . A s in the 
case of the CR-CCSD[T] and C R - C C S D ( T ) methods, we can simplify the 
C R - C C S D ( T Q ) energy expressions by considering the lowest-order approxi
mations to the Μ^ξ{2) and Mf&f (2) moments, which enter eq (51) v ia eqs 
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(38) and (39), and by dropping the ΤχΜζ{2) term in eq (51). This leads to 
the renormalized CCSD(TQ) methods, referred to as the R - C C S D ( T Q ) -
l , x and R-CCSD(TQ)-2 ,x (x = a,b) schemes. We refer the reader to 
the original papers (7,16,17) for further details. In analogy to the re
lationship between the MMCC-based R - C C S D ( T ) method and the stan
dard C C S D ( T ) approach, we can demonstrate that the R - C C S D ( T Q ) - l , a 
scheme reduces to the factorized C C S D ( T Q f ) approach of ref 12, when the 
^ c c s D ( T Q ) , a | e r a + T 2 | $ ) denominator is replaced by 1 in the R - C C S D ( T Q ) -
l , a energy formula. Thus, the R - C C S D ( T Q ) and C R - C C S D ( T Q ) ap
proaches can be viewed as extensions of the standard C C S D ( T Q f ) method. 

Finally, in two variants of the completely renormalized CCSDT(Q) ap
proach, referred to as the C R - C C S D T ( Q ) , a and C R - C C S D T ( Q ) , b schemes, 
which are examples of the MMCC(3,4) approximation, we add the renor
malized energy corrections due to T4 to the C C S D T energy. Thus, i f T\, 
T 2 , and T3 are cluster operators obtained by solving the C C S D T equations, 
then the energy expressions defining the C R - C C S D T ( Q ) , a and 
C R - C C S D T ( Q ) , b approaches are (7,16,20) 

£CR-CCSDT(Q),x = J5JCCSDT + I^OCSOT(Q)^M^^ j 

( $ C C S D T ( Q ) , x | e T 1 + T 2 + T 3 | φ ) ( χ = ^ (54) 

where £ C C S D T is the C C S D T energy and 

| * C C S D T ( Q ) ' a ) = (1 + Ί\ + Γ 2 + Γ 3 + ΤχΓ 2 + | Γ 2 Γ 2

( 1 ) ) | Φ ) , (55) 

| $ c c s D T ( Q ) , b ) = ( 1 + Τ ι + Τ 2 + η + Γ ι Γ 2 + Ι Γ | ) | φ ) . (56) 

The simpler R-CCSDT(Q) , a and R-CCSDT(Q) ,b (renormalized 
C C S D T ( Q ) ) methods are obtained by replacing the Mfffi(3) moments 
of the C C S D T equations, which enter eq (54) via the relationship between 
Μ 4 (3 ) |Φ) and M*ffi(S) given by eq (40), by their lowest-order (i.e., third-
order-like) estimates that are used to construct the (Qf ) correction of the 
standard C C S D T ( Q f ) method (cf. refs 7, 16, 20 for further details). As in 
the C C S D ( T ) and C C S D ( T Q ) cases, the R - C C S D T ( Q ) , a method reduces 
to the CCSDT(Qf) approach of ref 12, when (*ccsDT (Q) ,a | e T 1 + T a +T, | 4 j i s 

replaced by 1 in the R-CCSDT(Q) , a energy formula. 
The general nature of the M M C C theory, on which all renormalized and 

completely renormalized C C methods described here are based, allows us 
to proposed many other potentially useful approximations. We can, for 
example, introduce the MMCC(2,6) method, in which the C C S D results 
are corrected by considering all nonzero moments of the C C S D equations, 
including those corresponding to projections on pentuply and hextuply ex
cited configurations. We can also introduce the active-space variants of 
the renormalized and completely renormalized C C approaches, in which we 
consider small subsets of the generalized moments of C C equations defined 
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via active orbitals. Finally, we can use various non-perturbative choices for 
the wave function |Φ) that enters the MMCC(m A y ™>B) energy formula, eq 
(32). Simple CI wave functions |Φ) are particularly useful in excited-state 
M M C C calculations, which we discuss next. 

The Excited-State M M C C ( m A , m B ) Methods: M M C C ( 2 , 3 ) 

The M M C C (m,i , ras) energy formula, eq (32), can be used in cal
culations of excited states, if instead of the generalized moments of the 
ground-state S R C C equations, Mfc(mA)\$) or Μ^€^(ΤΠΑ) (cf. eqs (11) 
and (12)), we use the generalized moments of the E O M C C equations, i.e., 
Μ | ° μ ο ο ( Π Μ ) | Φ > or ME^fQCÀi)(mA) (cf. eqs (24) and (25)). The sim
plest choice of ( m ^ r a s ) , which is particularly useful in calculations for 
excited states dominated by doubles and excited-state PESs , is obtained 
by setting TUA at 2 and TUB at 3. In the resulting MMCC(2 ,3 ) approxima
tion, we use corrections ^ ( r a ^ m a ) , eq (34), to correct the E O M C C S D 
energies (the m A = 2 case) and assume that wave functions | Φ κ ) do not 
contain higher-than-triexcited contributions in the corresponding C I ex
pansions (the rriB = 3 case). The MMCC(2 ,3 ) energy expression is (98) 

EK(2,3) = I J E O M C C S D + 3 ) ? ( 5 7 ) 

where E%OMCCSO is the energy of the ΑΓ-th state obtained in the E O M 
C C S D calculations and 

<M2,3) = ( Φ κ | Μ ^ ° 3 Μ ^ ( 2 ) | Φ > / ( Φ κ | Λ ^ 8 Ι > β τ 0 0 3 Ι > | Φ ) . (58) 

The Rj?SD operator is the E O M C C S D excitation operator (cf. eq (30)) 
and is the C C S D cluster operator ( Γ ° 0 δ 0 = Tx + T 2 ) . The formula 
for M ] ^ M C C ( 2 ) | $ ) can be given the following form (cf. eq (24)): 

M f ° 3

M C C ( 2 ) | # ) = £ ^ % * ( 2 ) | Φ ^ > , (59) 

i<j<k 
a<b<c 

where Μχ^(2) are the E O M C C S D moments corresponding to projections 
of the E O M C C S D equations on triexcited configurations, 

MtukV) = W # | ( i / C C S D / $ C S D ) | ^ (60) 

with HCCSD representing the similarity-transformed Hamiltonian of the 
E O M C C S D approach, eq. (29). According to eq (26), 

Mtijk(2) = r%fOmtk\HCCSDm + < · $ I ( B ^ H g g l c | · ) , (61) 
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where rjjjÇfD is the coefficient at reference |Φ) in the many-body expansion 
of #% C S D '^). It can be shown (98) that 

Mf%K(2) = {^\{B^RK*)c\*) + < * $ | [ f i ^ D ( * * , i + RK*)]C\*) 

+ ( Φ ^ | ( 5 ί Χ 3 8 0 Λ ^ ι ) σ | Φ > + ^ 0 ο 8 Β ( Φ ^ Ί ^ δ 0 | Φ ) , (62) 

where HfCSO is the j-body component of HCCSO and RK,I and RK,2 are 
the singly and doubly excited components of R^SO. It immediately fol
lows from eq (62) that corrections δ κ (2,3) are expressed in terms of matrix 
elements of the E O M C C S D similarity-transformed Hamiltonian that en
ter the triples-reference (TO), triples-singles (TS), and triples-doubles (TD) 
blocks of HCCSB. The triples-tnples (TT) block of HCCSO does not enter 
the MMCC(2,3) energy formula. This characteristic of the MMCC(2 ,3 ) ap
proximation makes this approach particularly appealing to us. Very similar 
arguments can be used to demonstrate that the MMCC(2 ,4 ) approximation, 
in which the E O M C C S D energies are corrected by considering projections 
of the E O M C C S D equations on triply and quadruply excited configura
tions, requires a consideration of the TO, TS , T D , QO, QS, and Q D blocks 
of i f C C S D in calculating the corresponding corrections <S#(2,4). 

In analogy to the ground-state case, different variants of the MMCC(2 ,3 ) 
approximation are obtained by choosing different forms of | Φ κ ) in eq 
(58). A n interesting possibility is offered by the active-space CISDt ap
proach (7,98). In order to calculate the CISDt wave functions, we divide 
the available spin-orbitals into core spin-orbitals (i , j , k, . . . ), active spin-
orbitals occupied in |Φ) (I, J , Κ , . . . ), active spin-orbitals unoccupied in 
|Φ) (A, B , C , . . . ), and virtual spin-orbitals (a, b, c, . . . ). Once active 
orbitals are selected, we define the CISDt wave functions as follows (7,98): 

= {CKj> + CK,i + CKJ + <*, 8 ) |Φ) , (63) 

where CK,O\$), CK,I\$), and CKM$) a r e t n e reference, singly excited, and 
doubly excited components of | Ç j p D t ) and 

C K , 3 = Ε I*wf>- (64) 

i>i>fe 
a>t»C 

Thus, in the CISDt method, we construct wave functions | Φ # ) by including 
all singles and doubles from |Φ) and a small set of triples containing at least 
one active occupied and one active unoccupied spin-orbital indices. The C I 
expansion coefficients defining wave functions | $ ^ I S D t ) are determined vari
ational^. If N0 (Nu) is the number of active orbitals occupied (unoccupied) 
in |Φ) and if nQ (nu) is the number of all occupied (unoccupied) orbitals, 
then the number of triples included in the CISDt calculations is N0Nun\n\, 
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which is a relatively small prefactor times the number of doubles. Thus, the 
CISDt approach provides us with an inexpensive source of wave functions 
I**:) for calculating corrections ί κ ( 2 , 3 ) . 

The CISDt approach, used to generate wave functions |ΦΑ-) for the 
MMCC(2,3) calculations, can be regarded as a CI analog of the recently 
developed EOMCCSDt method (40,41 )· The noniterative character of the 
MMCC(2,3) method and the fact that the CISDt calculations are less ex
pensive than the EOMCCSDt calculations means that the CISDt-based 
MMCC(2,3) approximation represents a useful and inexpensive alternative 
to the already relatively inexpensive EOMCCSDt method. The MMCC(2,3) 
approach is an alternative to the perturbative triples approaches, such 
as EOMCCSD(T) (31), EOMCCSD(T) (32), EOMCCSD(T') (32), and 
CCSDR(3) (36,37), and their iterative EOMCCSDT-n (31,32) and 
C C 3 (34 -37) analogs. The perturbative triples E O M C C or response C C 
approximations provide erroneous description of excited-state PESs (38) 
and fail to describe more complicated excited states, such as the lowest Δ 
state of the C 2 molecule (37). As demonstrated below, the CISDt-based 
MMCC(2,3) method has no such problems. 

Representative M M C C Calculations for Ground- and 
Excited-State PESs 

In this section, we discuss the performance of the M M C C and renor
malized CC methods in calculations of molecular PESs. 

Ground-State PESs Involving Bond Breaking 

We have performed a series of test M M C C calculations for ground-state 
PESs of several small molecules, including HF (7,16), H 2 0 (16), BH (19), 
F 2 (19), N 2 (17,20), and C 2 (this work). The representative results are 
shown in Figure 1. We have also calculated the entire vibrational spec
trum of the HF molecule, based on the PESs obtained in the renormal
ized CC calculations (101) (see Table I). In all calculations, we used the 
ground-state RHF configuration as a reference. The most intriguing result 
is the fact that unlike the standard CCSD[T], CCSD(T), CCSD(TQ f ) , and 
CCSDT(Q f ) methods, their MMCC-based CR-CCSD[T], CR-CCSD(T), 
CR-CCSD(TQ), and CR-CCSDT(Q) counterparts are capable of describ
ing bond breaking, in spite of the presence of the MBPT-like terms in the 
CR-CCSD[T], CR-CCSD(T), CR-CCSD(TQ), and CR-CCSDT(Q) expres
sions (cf. eqs. (44), (45), (51), and (54)). The presence of similar terms in 
the conventional CCSD[T], CCSD(T), CCSD(TQ f ) , and CCSDT(Q f ) ex
pressions leads to erroneous description of PESs due to divergent behavior 
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of the M B P T series at large internuelear separations (cf., e.g., refe 6, 7, 
13-20, and references therein). 

Figure 1. Potential energy curves for the double-zeta (DZ) HF (a), i\T2 

(c), and C2 (d) molecules, and the cc-pVDZ F2 molecule (b) (see refs 7, 
16, 17, 19, 20 for the numerical data for HF, JV2, and F2, and see the text 

for further details). 

As shown in Figure 1 (a), the simple C R - C C S D ( T ) method elimi
nates the unphysical hump on the P E S for the H F molecule, produced 
by the C C S D ( T ) approach at intermediate internuelear distances R. The 
C R - C C S D ( T ) potential energy curve is located above the exact (full CI) 
curve. For the double zeta (DZ) (102) basis set, the errors in the C R -
C C S D ( T ) energies, relative to full CI , do not exceed 2 milihartree over 
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the entire range of R values (7,16). For the considerably larger aug-ec-
p V T Z basis set (103,104), the errors in the C R - C C S D ( T ) energies, rela
tive to full C C S D T (the full C C S D T approach is almost exact for single 
bond breaking (14,85)), do not exceed 3.9 milihartree (101). The C R -
C C S D ( T ) results for geometries near the equilibrium (R « Re), where the 
CÇSD(T) method works great, are virtually identical to those obtained 
with the C C S D ( T ) approach (at R = Re and for the D Z basis set, the 
C C S D ( T ) method gives a 0.325 milihartree error, which should be com
pared to a 0.500 milihartree error obtained with C R - C C S D ( T ) (7,16)). 
Even the simplest R-CCSD[T] and R - C C S D ( T ) approaches, which differ 
from the standard CCSD[T] and C C S D ( T ) methods only by the presence 
of the ( * c c s D [ T ] | e r 1 + T 2 | # ) a n d ^ c c s D ( T ) | e T 1 + r 2 | $ ) denominators in the 

corresponding energy expressions, provide considerable improvements in 
the calculated PESs (see Figure 1 (a)). 

Similar remarks apply to the C R - C C S D ( T ) , C R - C C S D ( T Q ) , and C R -
C C S D T ( Q ) results for other benchmark systems ( H 2 0 , B H , F 2 , N 2 ) . For 
example, when both O - H bonds in H 2 0 are simultaneously stretched to 
R = 2Re, so that the T$ and T 4 effects become large and difficult to de
scribe, the C C S D ( T ) and C C S D ( T Q f ) approaches completely fail. For a D Z 
basis set, errors in the CCSD(T) and CCSD(TQf) results, relative to full 
CI , are 7.699 and 5.914 milihartree, respectively. The C R - C C S D ( T ) and 
C R - C C S D ( T Q ) methods reduce these large errors to 1.830 and 1.461 mil
ihartree, respectively, with almost no extra effort (16). A t the same time, 
the C R - C C S D ( T ) and C R - C C S D ( T Q ) results are virtually identical to their 
C C S D ( T ) and C C S D ( T Q f ) analogs at R = Re. For another challenging 
case of the F 2 molecule, the C C S D method produces a minimum, which is 
nearly twice as deep as the minimum on the practically exact C C S D T curve, 
whereas the C C S D ( T ) and C C S D ( T Q f ) methods give completely erroneous 
PESs , with well-pronounced humps for intermediate values of R and with 
energies at large R values that are almost identical to the energy at the 
equilibrium geometry (19). The C R - C C S D ( T ) and C R - C C S D ( T Q ) meth
ods provide potential energy curves, which are very close to the C C S D T 
curve (see Figure 1 (b)). For the cc-pVDZ basis set, used in the bench
mark study of F 2 , the reference C C S D T value of the dissociation energy 
De is 28.19 kcal/mol. The C C S D calculation gives 53.13 kcai/mol. Our R-
C C S D ( T ) , C R - C C S D ( T ) , and C R - C C S D ( T Q ) methods using R H F orbitals 
give 28.46, 30.92, and 28.60 kcal/mol, respectively, in excellent agreement 
with the C C S D T value of De (19). The recently proposed VOD(2) and 
OD(2) approximations (89,90), which include the effects of both Γ3 and Γ4 
clusters through the perturbative expansion for the similarity-transformed 
Hamiltonian and which require orbital optimization at the C C level, give 
33.3 and 33.0 kcal/mol, respectively (90). These results are considerably 
worse than our results obtained with the much simpler R - C C S D ( T ) and 
C R - C C S D ( T ) approaches, which use only Γ3 corrections and do not require 
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orbital optimization. Similar remarks apply to the equilibrium bond lengths 
for F 2 , which for the cc-pVDZ basis set are 2.73, 2.74, and 2.74 bohr for the 
(C)R-CCSD(T) , (C)R-CCSD(TQ) , and C C S D T methods, respecti
vely (19), and ~ 2.8 bohr for the 0D(2) and V 0 D ( 2 ) approaches (90). 

The next example is a dissociation of the triple bond in the N 2 mole
cule (17,20) (see Figure 1 (c)). The N 2 molecule is characterized by large 
Γ3 and T4 effects, even at R = Re. For the stretched N - N distances R, the 
C C S D potential energy curve has an unphysical hump and is located signif
icantly below the exact (full CI) curve. The orbital optimization at the C C 
doubles level via the so-called V O O - C C D approach does not help at all : The 
V O O - C C D potential energy curve for N 2 is as bad as the C C S D curve (88). 
Even the full C C S D T method fails to provide a realistic description of the 
P E S of N 2 . The C C S D T curve has a hump for the intermediate values of 
R, and for larger values of R is located significantly below the exact and 
C C S D curves (see Figure 1 (c)). This implies the need for Γ4 (perhaps, even 
Γ5 and TQ) clusters in this case. The inclusion of Γ3 and T4 clusters v ia per
turbative C C S D ( T ) , CCSD(TQf) , and C C S D T ( Q f ) approximations leads 
to disastrous results at large internuelear separations. The C C S D ( T ) curve 
has a huge hump for the intermediate values of R, and for larger values of R 
is located significantly below the exact and C C S D curves. The C C S D ( T Q f ) 
and C C S D T ( Q f ) curves are located significantly above the exact curve for 
larger R values (see Figure 1 (c)). In view of the failure of all standard C C 
methods for N 2 , it is remarkable to observe the great improvement of the re
sults, when the noniterative C C methods are renormalized according to the 
M M C C theory. As shown in Figure 1 (c), the C R - C C S D ( T Q ) , b method, 
which is a simple modification of the C C S D ( T Q f ) approach and which, as 
the latter method, uses elements of M B P T to estimate higher-order effects, 
provides the potential energy curve which is almost identical to the exact 
curve. A large 334.985 milihartree error relative to full CI , obtained with 
the CCSD(TQf) approach for a D Z basis set at R = 2.25-Re» reduces to 
14.796 milihartree, when the C R - C C S D ( T Q ) , b method is employed (17). 
The 177.641 milihartree error relative to full CI , obtained at R = 2Re 

with the CCSDT(Qf) method, reduces to 1.161 milihartree, when the C R -
CCSDT(Q) ,b approach is used (20). The C R - C C S D T ( Q ) , b P E S of N 2 is 
very close to and above the full CI curve in the entire R < 2R€ region (see 
Figure 1 (c)). In this region, the differences between the C R - C C S D T ( Q ) , b 
and full CI energies do not exceed 7.6 milihartree and are as small as 0.719 
milihartree at R = Re and 1.161 milihartree at R = 2Re (20). 

A n interesting example is provided by the C 2 molecule, which is charac
terized by the large TN, η > 2, effects already at the equilibrium geometry. 
The effect of T 3 clusters at R = Re, as measured by the difference between 
the C C S D T and C C S D energies, is 18.593 milihartree, when the D Z basis 
set is employed. The difference between the C C S D T and full C I energies at 
R — Re is 2.091 milihartree, which indicates that Γ4 clusters play a nonneg-
ligible role, too. As in the case of N 2 , all standard C C approaches, including 
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the iterative C C S D and C C S D T methods and their perturbative C C S D ( T ) , 
C C S D ( T Q f ) , and CCSDT(Qf) extensions, fail to provide a correct descrip
tion of the P E S of C 2 (see Figure 1 (d)). The C C S D , C C S D ( T ) , and full 
C C S D T PESs have well-pronounced humps for the intermediate values of 
R. A t R = 3 Λ β , the errors in the C C S D ( T ) , C C S D ( T Q f ) , and C C S D T ( Q f ) 
energies, relative to full CI , are 96.055, 67.237, and 94.229 milihartree, re
spectively, when a D Z basis set is employed. The C R - C C S D ( T Q ) , b and 
C R - C C S D T ( Q ) , b approaches reduce these errors to 20.282 and 10.052 mil
ihartree, respectively. Even the simple R-CCSDT(Q) ,b method, which dif
fers from the standard CCSDT(Qf) approach only by the presence of the 
( * C C S D T ( Q ) | e T l + T 2 + T 3 | # ) denominator in the corresponding energy expres
sion, provides excellent results (the 8.834 milihartree error at R = 3 B e ) . 
The C R - C C S D ( T Q ) , b and C R - C C S D T ( Q ) , b potential energy curves of C 2 

are considerably better than curves provided by all standard C C methods. 
The R-CCSDT(Q) ,b curve is virtually identical to the C R - C C S D T ( Q ) , b 
curve and for this reason is not shown in Figure 1 (d). 

Table I. Selected vibrational term values and dissociation 
energies of the H F molecule a 

ν RKRb CCSD CCSDT CCSD(T) R-CCSD(T) CR-CCSD(T) 

0 2051 15 -7 -7 -4 -3 
1 6012 52 -19 -18 -9 -4 
2 9802 96 -28 -25 -9 -2 
3 13424 144 -36 -32 -9 2 
5 20182 252 -54 -47 -6 12 

10 34363 623 -116 -136 1 49 
11 36738 728 -131 -175 1 60 
12 38955 850 -148 -232 -2 72 
13 41007 993 -166 -9 87 
15 44576 1370 -207 -55 123 
19 49027 2881 -325 227 

De 49362 5847 -453 207 

a Units are cm" 1 , ν is the vibrational quantum number, and De is the dis
sociation energy. A l l C C values represent errors in the calculated energies 
relative to the R K R data. A l l CC calculations were performed with the 
aug-cc-pVTZ basis set (103,104). The spherical components of the d or
bitals were employed and the lowest orbital was kept frozen. The complete 
description of these C C calculations has been reported elsewhere (101). 
6 Vibrational term values from ref 105. The De value from refe 106, 107. 

Encouraged by the results of the above benchmark calculations, we have 
recently performed more realistic calculations for the potential energy curve 
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and vibrational term values of the H F molecule using the aug-ce-pVTZ basis 
set (103,104) (see Table I). As we can see, the simple, noniterative C R -
C C S D ( T ) method reduces the 5847 c m - 1 (0.72 eV) error in the dissociation 
energy De obtained with the C C S D approach, to 0.03 eV (the experimental 
value of De is 6.12 eV). The expensive and fully iterative C C S D T method 
gives the 453 c m - 1 or 0.06 eV error. The standard noniterative approxi
mations, such as C C S D ( T ) , do not support bound vibrational states with 
ν > 12 and errors in the CCSD(T) vibrational term values rapidly increase, 
from a few cm""1 for υ = 0 to more than 230 c m - 1 for ν = 12. The simplest 
way of renormalizing CCSD(T) via the R - C C S D ( T ) approach provides ex
cellent vibrational term values, which differ from the R K R values (105) by 
as little as 1-9 cm""1 for υ < 13 (the energy of the ν = 13 level is ~ 41,000 
c m " 1 !). The noniterative C R - C C S D ( T ) method reduces the 2881 cm"" 1 

and 325 c m " 1 errors in the C C S D and full C C S D T results, respectively, 
for the υ = 19 state of H F (energy of this highest observed state is 49,027 
c m " 1 ) to 227 c m " 1 . None of the existing methods can provide the results 
of similar quality with such a small effort. In fact, it would be difficult 
to obtain the results of this high quality with a lot more demanding mul-
tireference approaches. The analogous R - C C S D ( T Q ) and C R - C C S D ( T Q ) 
results for H F have been discussed in our recent paper (101). For exam
ple, the C R - C C S D ( T Q ) , a and C R - C C S D ( T Q ) , b approaches give the 135 
and 159 c m " 1 errors, respectively, for the ν = 19 state. Moreover, the 
C R - C C S D ( T Q ) , b method predicts the existence of the ν = 20 energy level 
to be located 28 c m " 1 below the corresponding dissociation limit. The 
most accurate potential function for H F to date, obtained using the hybrid 
RKR-based theoretical approach ( R K R plus improved long-range plus very 
accurate and expensive ab initio calculations), produces the ν = 20 level 
with the energy of 23 c m " 1 below the dissociation limit (106,107). 

Although we have focused in this section on the ground-state M M C C 
methods employing the MBPT- l ike guesses for | Φ 0 ) , we can also use in
expensive CI approximations, such as the aforementioned CISDt approach 
(cf. eq (63)), to generate | Φ 0 ) . For example, when the CISDt ground-state 
wave function is inserted into the MMCC(2 ,3) energy expression (cf. eq 
(35)) and the resulting MMCC(2 ,3 ) /CISDt approach is applied to a D Z 
H F molecule, the 12.291 and 33.642 milihartree errors, relative to full CI , 
produced by the C C S D and CISDt methods, respectively, at R = 5R€, 
reduce to 3.264 milihartree (7). As demonstrated in the next subsection, 
this new way of grafting CI onto the C C method is particularly successful 
when we apply the M M C C formalism to excited states. 

Excited-State PESs 

We have performed a series of M M C C ( 2 , 3 ) / C I S D t calculations for ver
tical excitation energies of Η 2 0 , N 2 , and C 2 (this work), and for the entire 
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PESs of ground and excited states of the CH+ ion (98). The results are 
summarized in Table II and Figure 2. 

Table II. Vertical excitation energies0 of H 2 0 , N2 ? and C2 

Molecule State Full CIb EOMCCSD* CCSb EOMCCSDt0* MMCC(2,3)D 

H 2 0 2 M j 

\lB2 

1 M 2 

362.87 
273.68 
426.72 
338.49 

360.362 
271.027 
423.523 
335.243 

362.27 
272.95 
425.97 
337.62 

361.078 
271.790 
424.206 
335.862 

362.151 
272.828 
425.464 
337.121 

N 2 352.22 
379.57 
393.89 
500.10 

355.179 
384.567 
400.508 
514.824 

353.44 
379.84 
394.21 
506.62 

353.271 
379.406 
393.919 
503.413 

356.281 
379.723 
394.610 
510.315 

c 2 50.89 
84.26 
205.88 
165.15 

54.183 
159.741 
213.105 
227.912 

48.38 
115.82 
204.14 
183.39 

48.598 
94.134 
208.992 
167.936 

47.474 
88.406 
204.621 
164.176 

α Units are milihartree. The basis set and nuclear geometries were taken 
from ref 37. The lowest-energy core orbitals (the lai orbital in H 2 0 , the 
1σ9 and lau orbitals in N 2 and C 2 ) were kept frozen. 
6 From ref 37 (see, also, ref 41 for the EOMCCSD results). The spherical 
components of the d orbitals were employed. 
c From ref 41. 
d The Cartesian d orbitals were employed. The active space used in 
the calculations for H 2 0 consisted of the I61, 3αι, 162, 4ai, and 2b\ or
bitals. The active space used in the calculations for N 2 consisted of the 
3σ9, lnUy 2πη, 1π9ι 2π9, and 3au orbitals. The active space used in the cal
culations for C 2 consisted of the Ιπη, 2nUj 3σ§, 3σ«, 1π9, and 2π9 orbitals. 

The H 2 0 , N 2 , and C 2 molecules provide us with examples of several 
important types of excited states, including states that are dominated by 
single excitations in a situation where the C C S D method gives accurate 
description of the ground state ( H 2 0 ) , states that are dominated by sin
gles in a situation where the C C S D method gives a poorer representation 
of the ground state ( N 2 and C 2 ) , and complicated excited states domi
nated by doubles in a situation where the Γ3 and Γ4 clusters are large and 
C C S D provides poor description of the ground state ( C 2 ) . We used our 
M M C C ( 2 , 3 ) / C I S D t approach to calculate the lowest excited XAX (2 lAx) 
state and the lowest 1 B i , 1 B 2 , and lA% states of H 2 0 , the lowest ιΙί9,1Σ^', 
1 Δ ΐ £ , and lIlu states of N 2 , and the lowest lUu, ΧΑ9, Χ Σ + , and lUg states 
of C 2 . The corresponding full C I excitation energies were calculated by 
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Christiansen et al. (37), who used the modified aug-cc-pVDZ basis 
sets (103,104) for H 2 0 and C 2 , and the cc-pVDZ basis set (103) for N 2 

(for further details about basis sets and equilibrium nuclear geometries used 
in these full CI calculations, see ref 37). In our MMCC(2 ,3 ) calculations, 
we used the same basis sets, although we had to use the Cartesian compo
nents of the d orbitals, instead of the spherical components used in ref 37; 
as explained in ref 41, the effect of using the Cartesian d's on the calcu
lated excitation energies is minor (0.05-0.34 milihartree for H 2 0 , 0.26-1.06 
milihartree for N 2 , and 0.11-0.70 milihartree for C 2 ) . As in ref 37, the 
lowest-energy core orbitals were kept frozen (see Table II). 

In Table II, our MMCC(2,3) results are compared with the E O M C C S D 
and C C 3 excitation energies reported in ref 37 and with the E O M C C S D t 
excitation energies reported in ref 41. The E O M C C S D t approach is the 
E O M C C method, in which relatively small subsets of triexcited components 
of cluster operator Τ and excitation operator R are selected through active 
orbitals (40,41)- The manifold of triexcited configurations used in the 
E O M C C S D t method is identical to that used in the CISDt calculations. 
This remark is important, since the CISDt wave functions | * j P D t ) , eq (63), 
are used to calculate the MMCC(2,3) corrections δκ(2,3), eq (58). The 
active orbitals used in MMCC(2 ,3 ) /CISDt and E O M C C S D t calculations 
for H 2 0 , N 2 , and C 2 are listed in footnote d of Table II. They were chosen 
on the basis of their importance in describing the valence excited states of 
H 2 0 , N 2 , and C 2 . The number of triples used in M M C C ( 2 , 3 ) / C I S D t and 
E O M C C S D t calculations reported here is a small fraction of all triples (~ 20 
% in the H 2 0 case, one third in the N 2 case, and ~ 30 % in the C 2 case). 
This means that the cost of calculating the MMCC(2 ,3 ) correction δκ(2,3) 
is small compared to E O M C C and other schemes that use all triples. 

The results in Table II show that the valence excitations in H 2 0 are 
rather easy to describe by all E O M C C methods. This is a consequence of 
the fact that all these states are dominated by singles. The errors in the 
E O M C C S D excitation energies, relative to full CI , for the lowest excited 
state of the lA\ symmetry and the lowest lB\, lB2, and XA2 states range 
between 2.5 and 3.2 milihartree (0.07-0.09 eV), which is a very good result. 
The iterative C C 3 approximation, in which triples effects are estimated us
ing perturbation theory, reduces these small errors to 0.6-0.9 milihartree 
(~ 0.02 eV). The full E O M C C S D t method, which uses a small subset of all 
triples defined through active orbitals, gives the 1.8-2.6 milihartree (0.05-
0.07 eV) errors. Our noniterative MMCC(2 ,3 ) approach, which uses inex
pensive CISDt wave functions to calculate corrections δ κ (2,3), which are in 
turn added to E O M C C S D energies, reduces the 2.5-3.2 milihartree errors 
in the E O M C C S D results to 0.7-1.4 milihartree (0.02-0.04 eV). 

The N 2 molecule represents a more challenging case than H 2 0 . The 
ground state of N 2 is characterized by relatively large T3 contributions (for 
the cc-pVDZ basis set used here, the difference between the C C S D and full 
C I ground-state energies is 13.465 milihartree (37)', for comparison, the 
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difference between the C C S D T and full C I ground-state energies is as little 
as 1.627 milihartree (41))- In addition, the lowest lTLu state of N 2 has a 
partially doubly excited character (37). In consequence, the errors in the 
E O M C C S D excitation energies, relative to full CI , are considerably larger 
than in the case of H 2 O (they range between 3.0 and 14.7 milihartree; cf. 
Table II). For the lowest lUu state, the E O M C C S D and full C I energies 
differ by 14.7 milihartree (0.40 eV). The C C 3 and MMCC(2 ,3 ) methods 
reduce this large error to 6.5 and 10.2 milihartree, respectively (0.18 and 
0.28 eV, respectively). The E O M C C S D t approach is in this case the only 
method that is capable of reducing the large error in the E O M C C S D re
sult for the lowest lUu state of N 2 to < 0.1 eV. It is encouraging to see, 
though, that the MMCC(2 ,3) approach is capable of improving the E O M 
C C S D result for the lUu state of N 2 . The improvements in the results 
for the remaining three states listed in Table II are worth noticing here, 
too. The MMCC(2 ,3) method reduces the 3.0-6.6 milihartree errors in the 
E O M C C S D results for the lUg, * Σ ~ , and lAu states to 0.2-4.1 milihartree. 
The MMCC(2 ,3 ) results for the *Σ~ and XAU states, which are dominated 
by singles, are virtually identical to the C C 3 and E O M C C S D t results. 

The most spectacular improvements in the E O M C C S D results and in 
the results of the calculations with the perturbative triples models, such 
as C C 3 , are obtained for the excited states of C 2 . In this case, the lowest 
lAg and lUg states are dominated by doubles. In addition, the correlation 
effects characterizing the ground state of C 2 are largely nondynamic, which 
is reflected in the large T3 and Γ4 contributions to the ground-state energy 
(26.3 and 2.7 milihartree, respectively (85)). This leads to a complete fail
ure of the E O M C C S D and C C 3 approximations. For the vertical excitation 
energy corresponding to the transition from the ground state (Χ Χ Σ + ) to 
the lowest lAg state, the error in the E O M C C S D result, relative to full CI , 
is 75.5 milihartree (> 2 eV; see Table II). This error is almost as big as the 
full C I value of the Χ Χ Σ + 1 xAg excitation energy, which is 2.293 eV. 
The otherwise successful C C 3 method gives a large, 31.6 milihartree (0.86 
eV), error. The Χ *Σ+ -4 1 xUg transition is also difficult to describe by 
the E O M C C and response C C methods. The E O M C C S D approach gives 
a large, > 1.7 eV error, relative to a full C I value of the corresponding 
excitation energy of 4.494 eV. The C C 3 method reduces this error to still 
large 0.50 eV. The active-space E O M C C S D t approach greatly improves 
these poor results by reducing the large errors in the E O M C C S D and C C 3 
results to 9.9 milihartree (0.27 eV), for the lowest xAg state, and 2.8 mil i 
hartree (0.08 eV) for the lowest xUg state. It is remarkable to observe that 
our new MMCC(2 ,3 ) /CISDt approximation, employing a small (~ 30 %) 
fraction of all triples in constructing noniterative corrections £ # ( 2 , 3 ) , gives 
a small, 4.1 milihartree (0.11 eV), error in the excitation energy for the low
est xAg state and even smaller, 1.0 (0.03 eV), error in the excitation energy 
for the lowest xUg state. We should keep in mind that we do not even have 
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to consider the T T block of the E O M C C S D similarity-transformed Hamil
tonian to obtain these accurate M M C C ( 2 , 3 ) results. For the remaining two 
states of C 2 , which are dominated by singles, the M M C C ( 2 , 3 ) results are 
as good as those obtained with the C C 3 method. 
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Figure 2. Potential energy curves for the CH+ ion. (a) A comparison of 
the EOMCCSD and full CI results, (b) A comparison of the CISDt and 
full CI results, (c) A comparison of the EOMCCSDt and full CI results, 
(d) A comparison of the MMCC(2,3) and full CI results (see refs 41, 97, 

98 for the numerical data and see the text for further details). 

The final example is provided by the C H + ion (see Figure 2). The results 
of the full C I calculations for the ground state and for a few excited states of 
the 1 Σ + , Χ Π , and LA symmetries can be found in refs 108 (the equilibrium 
geometry, RC-B = Re) and 3 9 (other values of Rc-n, including l.5Re 
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and 2Re). These authors used the [5s3pld/3slp] basis set described i n ref 
108. The same basis set was used in the M M C C ( 2 , 3 ) / C I S D t calculations 
reported in ref 98 and overviewed here. In calculating the CISDt wave 
functions, used to generate the \Φκ) states for the MMCC(2 ,3 ) calculations, 
we employed a small active space consisting of the highest-energy occupied 
orbital, 3σ, and the three lowest-energy unoccupied orbitals, lwm, 1πν, and 
4σ. This choice of active space reflects the nature of the orbital excitations 
that define the valence excited states of C H + (40,41 )· 

As explained in ref 98, the only other EOMCC-re la ted approach that can 
compete with the noniterative MMCC(2,3) method is the iterative E O M 
C C S D t method (the E O M C C S D T approach is competitive, too (41,97), 
but we must keep in mind that the cost of the full E O M C C S D T calculations 
is considerably higher). Thus, in our discussion we focus on a comparison 
of the MMCC(2 ,3 ) results with those obtained with the E O M C C S D ap
proach, which the MMCC(2 ,3) method should correct (see Figure 2 (a)), 
with those obtained with the CISDt method, which is used to generate 
the | Ψ # ) wave functions for calculating corrections δκ(2,3) (see Figure 2 
(b)), and with those obtained in the full E O M C C S D t calculations (41, 97), 
in which we used the same active space as used in the MMCC(2 ,3 ) cal
culations (see Figure 2 (c)). The MMCC(2 ,3 ) results for the PESs of the 
three lowest 1 Σ + states, two lowest lU states, and the lowest ι Δ state are 
shown in Figure 2 (d). The more complete set of the E O M C C S D , E O M 
C C S D t , and MMCC(2 ,3 ) /CISDt results for the four lowest *Σ+ states, 
two lowest 1 Π states, and two lowest *Δ states and several nuclear ge
ometries can be found in refs 41, 97, 98. The results for RC-H = Re 
obtained by other authors with the perturbative triples methods, includ
ing the noniterative E O M C C S D ( T ) , E O M C C S D ( T ) , and E O M C C S D ( T ' ) 
approaches and the iterative E O M C C S D T - n and C C 3 models, which are 
worse than those obtained with MMCC(2 ,3 ) and E O M C C S D t , can be 
found elsewhere (31,32,35,36). The full E O M C C S D T results for Rc-n = 
Re, 1.5Re, and 2Re will be reported in the future publication (97). 

We begin our discussion with the results for . R C - H = Re- For transi
tions to states that have a predominantly biexcited nature (the first-excited 
1 Σ + state and the lowest two LA states) and for the second Χ Π state that 
has a significant biexcited component, the errors in the vertical excitation 
energies at the equilibrium value of RC-H, obtained with the noniterative 
MMCC(2 ,3 ) approach, are 0.01-0.10 eV (98). This should be compared 
to the 0.33-0.92 eV errors in the E O M C C S D results, the 0.2-0.3 eV errors 
obtained with various perturbative triples approaches, and the 0.50-0.88 
eV errors in the results obtained with the CISDt approach (see refs 40, 41, 
97, 98, and references therein). For other states studied in refs 40, 41, 97, 
98 and elsewhere (31,32,35,36) (the third and fourth *Σ+ states and the 
lowest 1 Π state), the errors in the MMCC(2 ,3 ) results, relative to full CI , 
are 0.00-0.01 eV (98). The MMCC(2 ,3) results at Rc-u = Re are as good 
as or even better than the results provided by the E O M C C S D t method, 

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

3

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



59 

which gives the 0.02-0.09 eV errors for the first-excited Χ Σ + state, the low
est two LA states, and the second *Π state, and 0.00-0.01 eV errors for the 
third and fourth 1 Σ + states and the lowest 1 Π state (41)-

This spectacular performance of the noniterative MMCC(2 ,3 ) approx
imation is not limited to vertical excitation energies at RC-H = Re- As 
shown in Figure 2 (d), the MMCC(2,3) method is capable of providing ex
cellent description of entire excited-state PESs. The huge (often > 1 eV) 
errors in the E O M C C S D and CISDt results for the entire excited-state PESs 
of C H + (cf. Figures 2 (a) and (b)) reduce in our MMCC(2 ,3 ) calculations to 
0.00-0.10 eV. For example, the errors in the E O M C C S D excitation energies, 
relative to full CI , for the three lowest excited states of the 1 Σ + symmetry, 
the two lowest 1 Π states, and the two lowest *Δ states are 0.668, 0.124, 
0.256, 0.109, 0.564, 1.114, and 2.095 eV, respectively, at RC-H = 1 5 # e , 
and 0.299, 0.532, 0.771, 0.234, 0.467, 1.178, and 3.950 eV, respectively, at 
Rc-u = 2Re iU)- Our MMCC(2 ,3) method reduces these large errors 
to 0.072, 0.005, 0.025, 0.024, 0.059, 0.065, and 0.086 eV, respectively, at 
. R C - H = 1·5Λβ, and 0.074, 0.048, 0.046, 0.045, 0.007, 0.079, and 0.029 eV, 
respectively, at RC-H = 2Re (98). As in the RC-H = Re case, the only 
other E O M C C approaches that can provide the results of this high quality 
are the full E O M C C S D t and E O M C C S D T approaches (41,97). Interest
ingly enough, the MMCC(2,3) approximation is capable of providing the 
correct asymptotic behavior of the potential energy curves of C H + , restor
ing, for example, the degeneracy of the second 1Σ+ state, the second 1 Π 
state, and the lowest *Δ state in the RC-H = oo limit, which is broken by 
all doubles models, including the E O M C C S D approach (see Figure 2 (a) 
and ref 98) and the V O O - C C D method advocated by Head-Gordon and 
coworkers (39). Clearly, the MMCC theory provides us with the least ex
pensive ab initio methods of obtaining high quality PESs of excited states. 
There is no need to reoptimize orbitals to obtain excellent excited-state 
PESs in M M C C calculations; the ordinary R H F orbitals are sufficient. The 
required computer effort is small. For example, the fraction of al l triples 
used in the MMCC(2 ,3 ) /CISDt calculations discussed here was, depending 
of state's symmetry, 26-29 %. 

Summary and Concluding Remarks 

We have overviewed the new approach to the many-electron correlation 
problem in atoms and molecules, termed the method of moments of coupled-
cluster equations ( M M C C ) . The main idea of the M M C C theory is that of 
the noniterative energy corrections which, when added to the ground- and 
excited-state energies obtained in approximate C C calculations, recover the 
exact energies. We have demonstrated that the M M C C formalism leads to 
a number of useful approximations, including the renormalized and com
pletely renormalized C C S D ( T ) , C C S D ( T Q ) , and C C S D T ( Q ) methods for 
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ground states, and the MMCC(ra,4, TUB) approaches for calculating excited 
states. The main theoretical concepts have been illustrated by the examples 
of applications of approximate MMCC methods to ground- and excited-
state PESs of small molecular systems. We have demonstrated that the 
M M C C theory provides us with the framework for designing "black-box" 
approaches that can be used in accurate calculations of molecular PESs at 
the fraction of the effort associated with multireference calculations. 

Clearly, the new formalism needs further development and testing. 
Among interesting formal problems are studies of the open-shell extensions 
of the (C)R-CCSD(T), (C)R-CCSD(TQ), (C)R-CCSDT(Q), and 
MMCCira^raB) methods, development of the excited-state extensions of 
the renormalized CC approaches, and investigation of the role of higher mo
ments of CC equations, which were heuristically neglected in the 
MMCC(2,3), MMCC(2,4), and MMCC(3,4) approximations discussed in 
this chapter. Analytical derivatives for the (C)R-CCSD(T), 
(C)R-CCSD(TQ), and (C)R-CCSDT(Q) methods and other 
MMCC(mA, me) schemes represent another important problem. All these 
issues are under intense investigation by our group and the results will be 
reported as soon as they become available. 
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Chapter 4 

The Photoelectron Spectrum of the NO 3 Radical 
Revisited: A Theoretical Investigation of Potential 

Energy Surfaces and Conical Intersections 

M a r k Wladyslawski1,2 and Marcel Nooijen1,* 

1Department of Chemistry, Princeton University, Princeton, NJ 08544 
2National Science Foundation Graduate Research Fellow 

The vertical ionization spectrum of the nitrogen trioxide 
radical (NO 3) has been examined by the DIP-STEOM-CCSD 
and DIP-EOM-CCSD methods (double ionization potential 
[similarity transformed] equation-of-motion coupled-cluster 
singles and doubles). The DIP-STEOM and DIP-EOM 
approaches avoid artifactual symmetry breaking of the 
reference wavefunction by starting from the symmetry-correct 
nitrate anion (NO3

-) orbitals and provide a balanced treatment 
of dynamical and non-dynamical correlation effects. The five 
lowest singlet and five lowest triplet states of the cation (NO 3

+ ) 
are considered. The calculated vertical ionization potentials 
match well with the band maxima in the photoelectron 
spectrum obtained by Wang. D. X.; et al. (J. Chem. Phys. 
1997, 106, 3003). A broad feature in the spectrum, which has 
previously been assigned to the 1E'' state, is assigned by us to 
the nominally forbidden 3A2' state. The 3A2' state exhibits a 
conical intersection with the nearby, allowed 3E' state and is 
thus expected to gain intensity through a vibronic coupling 
mechanism; the 1E'' state is instead found to nearly coincide 
with the lower-energy 3E'' state. Another conical intersection 
may account for the broad feature associated with the 3E' state. 

© 2002 American Chemical Society 65 
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Introduction 

The importance of the nitrogen trioxide radical (N0 3 ) in atmospheric 
chemistry is well recognized and has prompted widespread investigation of its 
chemical and physical properties (1). Two recent experimental studies (2,5) of 
the N 0 3 ionization spectrum have motivated several new theoretical analyses. In 
addition to examining the lowest N 0 3 ionization potential (IP), much theoretical 
work has focused on the "symmetry breaking" problem in the neutral and cation 
(N0 3

+ ) ground states, namely whether the precise minimum of each ground 
potential energy surface possesses D 3 h or C 2 v symmetry. Very few analyses have 
considered any excited states of the N 0 3

+ system. No study has yet attempted to 
reproduce the full vibrational features of the N 0 3 ionization spectrum. In this 
work, we begin to examine the elements that may play a critical role in such an 
explanation. 

In the first reported photoionization study of the neutral N 0 3 system, Monks 
et al. (2) observed a single sharp peak at 12.57 eV and attributed it to the lowest 
adiabatic ionization, N 0 3

+ (U iO «— N 0 3 (2A20> in D 3 h symmetry. The sharp 
onset and absence of vibrational structure suggest that the ground states of the 
neutral and cation have nearly identical geometries. They concluded that both 
states are of D 3 h symmetry, primarily based on their CASSCF calculations and 
the earlier MP4 single point results for the cation (4,5). The MPn studies are 
considered inconclusive, however, as the symmetry of the cation ground state 
was found to depend on the order of perturbation employed. Recent work by 
Miller and Francisco (6), in which the MPn geometries were allowed to relax, 
also found similar variations and has verified that, through fourth order, the MPn 
series fails to provide an accurate treatment of N 0 3

+ . 
In the second recent experimental study, Wang et al (3) measured the Hel 

photoelectron (PE) spectrum, observing five distinct bands. Again, the lowest 
ionization was a single sharp peak (12.55 eV), suggesting the similarity of the 
neutral and cation ground state geometries. The five bands were assigned to the 
five lowest vertical IPs of N 0 3 as computed by DFT calculations in D 3 h 

symmetry (3). Recent MCSTEP (multi-eonfigurational spin tensor electron 
propagator) calculations by Heryadi and Yeager (7) also found reasonable 
agreement with the experimental peaks, but they concluded that the radical 
ground state could have either D 3 h or C 2 v symmetry. Although their 
optimizations do slightly favor the C 2 v geometry, the D 3 h neutral and cation 
structures are more consistent with the sharp first ionization peak. 

The symmetry breaking problem for the neutral and cation ground states has 
proven to be a very difficult theoretical question, with results supporting either 
the D 3 h (4,5,7-15) or C 2 v (4-8,12,16-20) symmetry. A recent study by Eisfeld 
and Morokuma (8) examined in detail the reasons and effects of symmetry 
breaking on the N 0 3 ground state potential energy surface. In particular, they 
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considered how the N 0 3 wavefunction symmetry breaking of the Hartree-Fock 
(HF) reference is difficult to overcome by dynamic correlation. The symmetry-
broken wavefunction persists in the correlated calculation and can lead to 
artifactual symmetry breaking (21) of the equilibrium geometry, 

Eisfeld and Morokuma (8) went on to detail the non-trivial task of obtaining 
symmetrically correct wavefunctions for the N 0 3 ground state in CASSCF and 
MR-SDCI. They found that a significantly large active space was necessary. 
Even the reasonable elimination of active orbitals that were almost always 
doubly occupied or almost always entirely empty resulted in symmetry breaking 
of the CASSCF wavefunction. 

Another category of approaches that avoids the symmetry breaking problem 
of the orbitals for the target state is based on using a related, well-behaved H F 
reference instead. Examples of such techniques include: quasi-restricted 
Hartree-Fock coupled-cluster (QRHF CC) (11,19), symmetry adapted cluster 
configuration interaction (SAC-CI) (22,23), coupled-cluster linear response 
theory (CCLRT) (24-26) or equivalently equation-of-motion coupled-cluster 
(EOM-CC) (27-32), Fock space multi-reference coupled-cluster (FSMRCC) (33-
37), and similarity transformed equation-of-motion coupled-cluster (STEOM-
CC) (38-40). In the case of N 0 3 and N 0 3

+ , the restricted Hartree-Fock (RHF) 
orbitals of the closed-shell N 0 3 " anion system can be used as the reference. The 
anion orbitals are stable with respect to symmetry perturbations, and the system 
does not suffer from the artifactual symmetry breaking of the neutral and cation. 

The QRHF C C method has been applied by Stanton and co-workers (11,19) 
and the F S M R C C method has been applied by Kaldor (9,10) to consider the 
ground state of the N 0 3 radical system. In these approaches, the RHF orbitals 
for the nitrate anion are first solved, and a valence electron is then deleted to 
form the reference for the neutral. Although such a reference is not variationally 
optimal, it may be more suitable for the N 0 3 correlation problem than the 
standard U H F (unrestricted HF) reference. In UHF-based approaches, extensive 
orbital relaxation is involved in correcting for the symmetry-broken reference, 
while in the anion-based methods, the wavefunction symmetry conditions are 
satisfied from the start. 

The symmetry-correct anion orbitals can also be utilized in calculations of 
states of the N 0 3

+ cation. The primary purpose of this work is to examine the 
N 0 3 ionization spectrum and the ground and low excited states of the N 0 3

+ 

cation system by the DIP-STEOM-CCSD method (40) (double ionization 
potential similarity transformed equation-of-motion coupled-cluster singles and 
doubles). The DIP-STEOM-CCSD method is built upon the IP-EOM-CCSD 
method (32) (ionization potential equation-of-motion coupled-cluster singles and 
doubles), which in turn, has been shown to be equivalent (41,42) to singly 
ionized FSMRCC, such as the example of Kaldor above. The DIP-STEOM-
CCSD method generates ground and excited states of the cation by deletion of 
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two electrons from the closed-shell anion reference determinant. Thus, a 
symmetry-broken wavefunction is automatically avoided by starting from the 
symmetry-correct anion orbitals. Additionally, the method treats the multi-
configurational character of the cation states in a balanced way. 

We will begin by considering the IP-EOM-CCSD neutral N 0 3 ground state 
( 2 A 2 0 geometry and harmonic vibrational frequencies. The DIP-STEOM-CCSD 
method will then be applied to compute the N 0 3 vertical ionization spectrum. 
We also perform the first calculations of a newly developed DIP-EOM-CCSD 
method (double ionization potential EOM-CCSD), which verify the DIP-
STEOM-CCSD results. Agreement is very good between the vertical results and 
the experimental PE band maxima (5). However, our calculated vertical 
ionization potential to the XE" state does not agree well with previous theoretical 
results (5,7), and this leads to a tentative reassignment of the PE spectrum. The 
potential energy surfaces of the ground and low excited states of the cation are 
then examined by the DIP-STEOM-CCSD method. The geometry of the cation 
ground state ( ! AiO is optimized and some recent contradicting theoretical results 
are scrutinized. We go on to consider the cation XE" potential energy surface in 
detail, particularly in terms of the Jahn-Teller effect. Finally, the geometries of 
the low-lying triplet states (3E'\ 3E\ and 3 A 2 0 are optimized and suggest a 
possible explanation for the broad features and the reassigned peak in the PE 
spectrum: Conical intersections are found near the 3E' and the 3 A 2 ' equilibrium 
structures; these are expected to dramatically affect the observed spectrum, 
altering it from that predicted in the vertical, Franck-Condon approximation 
(43). The broad, reassigned feature may be attributed to vibronic coupling of the 
nominally forbidden 3 A 2 ' state with the intersecting, allowed 32T state. 

Theoretical and Computational Details 

The R H F orbital diagram for the closed-shell N0 3 ~ anion is presented in 
Figure 1 and should aid the reader in the discussion to follow. The molecular 
orbital (MO) configuration of the N 0 3 " anion in D 3 h symmetry is 
[Core](4a 10 2(la 2 '0 2(3e0 4(4e0 4(le >0 4(la 20 2 , where [Core] refers to the seven 
deepest-lying (filled) MOs. The uppermost [Core] orbital has an energy of -31 
eV and is thus well separated from the orbitals shown. The closest-lying virtual 
orbital (2a2") has an eigenvalue of +10 eV. 

The key element of the E O M and S T E O M methods is a similarity 
transformation (42) of the second-quantized Hamiltonian (prior to the 
diagonalization). A similarity transformation changes the matrix elements and 
eigenvectors of an operator but leaves the eigenvalues unchanged. A careful 
choice of transformation can reduce the coupling between excitation levels, 
thereby reducing the size of the minimum reasonable subspace needed in the 
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Figure 1. Energy diagram of the uppermost RHF orbitals ofN03 

(TZ2P basis at D3h RN0 = 1230 k) 

approximate diagonalization. Essentially, the effects of higher levels of 
excitation can be (approximately) incorporated into the lower level elements of 
the transformed, effective Hamiltonian. 

In the most straightforward diagonalization approach, the familiar 
configuration interaction (CI) theory, in order to approximate predominantly 
singly excited states of a closed-shell system, one should include in the 
diagonalization at least up to a selection of triply excited determinants. This is a 
simple consequence of the single and double, pure excitation operators in the 
Hamiltonian, which couple determinants that are up to two excitation levels 
apart. In the EOM-CCSD method (27-29), however, a similarity transformation 
is first performed such that the pure single- and double-excitation operators are 
made to vanish. The double-excitation operators are the primary coupling 
elements between the singly and triply excited determinants. To a reasonable 
approximation, therefore, states dominated by single excitations can be obtained 
in EOM-CCSD by diagonalization of the transformed Hamiltonian over the 
subspace including only up to doubly excited determinants. In addition to 
excitations, due to the formulation of the theory in second-quantization, states 
with a different number of electrons than the starting determinant can also be 
considered, yielding ionized and attached states of the reference system. 

The EOM-CCSD method has been shown to be an accurate approach for 
calculating excitation energies (EE-) (29,30), electron affinities (EA-) (31), and 
ionization potentials (IP-) (32) of closed-shell systems. For the computations 
presented here, a coupled-cluster singles and doubles (CCSD) calculation is first 
performed on the closed-shell N0 3 ~ anion system. The Hamiltonian is similarity 
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transformed using the N 0 3 " CCSD amplitudes and then, in IP-EOM-CCSD, is 
diagonalized over the subspace of one-hole (Ih) (analogous to "singles") and 
two-hole one-particle (2hlp) (analogous to "doubles") configurations to obtain 
states of the neutral N 0 3 system. (Holes correspond to deletions of electrons 
from occupied orbitals in the reference determinant, and particles correspond to 
creation of electrons in virtual orbitals.) In this way, ground and excited, singly 
ionized states (relative to the closed-shell reference) are obtained. The IP-EOM-
CCSD method is similar in spirit to Green's function or electron propagator 
approaches (44-48) and is in fact equivalent to coupled-cluster Green's function 
(CCGF) theory (49,50) for ionizations. 

In the STEOM-CCSD method (38-40), a second similarity transformation is 
performed such that the primary coupling elements between the singly and 
doubly excited determinants are also made to vanish. Now, states dominated by 
single excitations can be obtained in STEOM-CCSD by diagonalization over 
only singly excited determinants. This represents an enormous reduction in 
computational cost compared to that of CI or even E O M . In fact, the S T E O M 
method can be considered a rigorous correlated equivalent (40) of the CI singles 
(CIS or Tamm-Dancoff approximation, TDA) method, but using a fully 
correlated, effective Hamiltonian. 

The STEOM-CCSD method can be applied to excitation energies (EE-) (38-
40,51-54), double electron attachments (DEA-) (40), and double ionization 
potentials (DIP-) (40,55,56) of closed-shell systems. In the DIP-STEOM-CCSD 
method, applied here, the matrix elements that couple the 2h (analogous to 
"singles") and the 3hlp (analogous to "doubles") determinants are primarily 
hhph integrals. A selection of the most important of these is made to vanish 
through a corresponding selection of IP-EOM-CCSD eigenvectors used to 
construct the second similarity transformation. States of the N 0 3

+ cation system 
are double deletions relative to the closed-shell N 0 3 ~ anion reference; with the 
main coupling to the 3hlp determinants included implicitly, the N 0 3

+ ground 
and excited states can be obtained by diagonalization of the N03~-based S T E O M 
Hamiltonian over the subspace of 2h configurations only. By this simple CÏ-
"singles"-like diagonalization of the (doubly transformed) S T E O M Hamiltonian, 
a large number of electronic states of the twice-ionized system (relative to the 
closed-shell reference) can be obtained at very little cost. 

We have also recently implemented a DIP-EOM-CCSD approach, where 
states of the N 0 3 * cation can also be obtained by diagonalization of the singly 
transformed E O M Hamiltonian over the larger subspace of 2h and 3hlp 
configurations. To our knowledge, the DIP-EOM-CCSD calculations presented 
here are the first to appear in the literature. The method is akin to 2&-type 
propagator approaches (57,58), as applied for example by Tarantelli et al to 
problems in Auger spectroscopy (59-64). Although the DIP-EOM-CCSD 
diagonalization space is significantly larger than that of DIP-STEOM-CCSD 
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(and thus more expensive), the DIP-EOM-CCSD method includes the 3h\p 
("doubles") configurations explicitly. The DIP-STEOM-CCSD method, on the 
other hand, includes the most important 3hlp ("doubles") and 4h2p ("triples") 
contributions implicitly through the second similarity transformation. It is 
therefore interesting to compare the results of the two approaches. Although not 
presented here, an extended-STEOM-CCSD approach has also recently been 
developed (65,(56), where the larger diagonalization over singles and doubles is 
performed, but of the doubly transformed S T E O M Hamiltonian; the method 
therefore implicitly incorporates some effects up to quadruple excitations. 

Through the similarity transformations and diagonalizations described, the 
E O M and S T E O M methods incorporate both dynamic and non-dynamic electron 
correlation effects. The ground and excited states of a system are obtained in a 
uniform manner in these methods. Similarly, the singlet and triplet states are 
treated consistently in the DIP methods, as they are simply deletions of two 
electrons of appropriate spins. 

A l l calculations were performed with a local version of the ACES II suite of 
electronic structure programs (67). Working calculations were carried out in a 
DZP basis set (double-zeta plus polarization), while final calculations were 
performed in a TZ2P basis set (triple-zeta with two polarization functions per 
atom) (68,69). Spherical harmonic d-type orbitals were used. The four core Is 
orbitals were dropped from the post-HF calculations. A l l IP-EOM-CCSD and 
DIP-STEOM-CCSD optimizations were performed using analytical energy 
gradients, while numerical gradients were used for DIP-EOM-CCSD. We 
recently derived explicit formulas for the analytical STEOM-CCSD gradients 
(70) for all variants (EE-, DEA- , and DIP-), and these will appear in a future 
work (71). The analytical STEOM gradients were implemented into A C E S II 
and have been thoroughly tested against numerical gradients. Harmonic 
vibrational frequencies were computed through finite differences of the gradients 
above. In the DIP-STEOM-CCSD method, an active space of occupied orbitals 
for the second similarity transformation must be chosen. A l l occupied RHF 
anion orbitals greater in energy than -20 eV were taken, and precisely these were 
shown in Figure 1. 

We have also recently implemented into ACES II an electronic state-
tracking algorithm. Excited electronic states are typically optimized by 
following the energy-ordered state of a particular symmetry (e.g. the 2 n d state of 
3 A 2 symmetry). In the course of the optimization, however, it can often happen 
that the desired diabatic state crosses through another state of the same symmetry 
(e.g. the 2 n d state of 3 A 2 symmetry becomes the 1 s t state), and the state followed 
is subsequently incorrect. To overcome this problem, at each geometry step in 
the optimization, we compute the approximate overlap of the set of all nearby 
states (of the same symmetry) with the set of states from the previous iteration. 
The mixing and crossing diabatic states can thus be tracked through the different 
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geometries. For this procedure to be practical, however, we need to compute a 
number of excited electronic states in an efficient manner. In this regard, the 
S T E O M method is ideal. In the final simple diagonalization, a sizable number 
of excited states can be obtained at essentially no additional cost. 

Results and Discussion 

I. N 0 3 Neutral Ground State 2A{ 

Table I. Neutral NO3 ground state 2 A 2 ' equilibrium geometry 
and vibrational frequencies 

N03 Ground State, D3h Exp. IP-EOM-CCSD MR-SDCI 
2A£ DZPa TZ2P DZPb 

D 3 h Geometry R N 0 ( A ) 1.240c 1.238 1.230 1.246 

Vibrational Freqs. (cm - 1) 
Sym. stretch a{ 1060^ 
Umbrella a 2 " 762 e 

Asym. stretch e 1480 \ 1492 c / 

Asym.bend e -250*, 360 g , 380^ 

Zero-Point Vib. Energy (eV) 

1148 1133 1141 
794 814 757 
1144 1113 1439 
251 249 174 

0.29 0.29 
a See also reference (13) b Reference (8) c Reference (72) dReference (75) 
e Reference (74) Reference (75) s Reference (76) 
h Reference (13) uses a linear vibronic coupling model between the 2A2' and 2E" states 
to estimate the asymmetric bend harmonic frequency from experimental data in 
reference (76). 

The N 0 3 ground state ( A 2 0 equilibrium geometry and harmonic vibrational 
frequencies as computed by the IP-EOM-CCSD method are collected in Table I. 
The various experimental assignments are given, with appropriate references. 
Also tabulated is the recent symmetry-correct CASSCF/MR-SDCI analysis of 
Eisfeld (8). (The reported data refers to the largest state averaging used in the 
study, 2A2'+2E"+2E'.) Very recently, Crawford and Stanton (75) published IP-
EOM-CCSD/DZP results for the NO3 ground state, and our DZP data in Table I 
nearly identically reproduce theirs. The small discrepancies can be attributed to 
our dropping of the four core Is orbitals. 
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As we intuitively expect, the principal component of the IP-EOM-CCSD 
ground state of the neutral N 0 3 system is the single deletion of an electron from 
the anion l a 2 ' H O M O (92% in TZ2P). The N 0 3 ground state equilibrium 
structure is found to be of D 3 h symmetry. Vibrational frequencies are all real and 
verify the D 3 h structure to be a true minimum on the potential energy surface. 
The calculated bond lengths agree fairly well with the experimental and M R -
SDCI structures. The IP-EOM-CCSD results are also consistent with the earlier 
F S M R C C results of Kaldor (9JO), as expected, since the methods have been 
shown to be equivalent (41,42). The IP-EOM-CCSD vibrational frequencies 
agree reasonably with the experimental assignments, with the exception of the e' 
asymmetric stretch. 

As is well known, the potential energy surface of the neutral N 0 3 ground 
state is very flat in the region of the minimum (12). The harmonic 
approximation for the vibrational frequencies is thus expected to be rather poor. 
A better description of the neutral vibrational features was provided by Mayer, 
Cederbaum, and Koppel (12) in terms of a vibronic coupling model of 
interacting electronic states. As we shall later see, a similar model may be 
needed to properly describe the N 0 3

+ cation vibrational dynamics seen in the 
Wang (3) PE spectrum. 

The closest alternative to the IP-EOM-CCSD method is the QRHF CCSD 
approach, which also starts from the same well-behaved anion orbitals. Despite 
this symmetry-correct reference, the QRHF CCSD/DZP optimization of Stanton, 
Gauss, and Bartlett (19) found a "one-long-two-short" minimum structure of C 2 v 

symmetry (R^l .351 Â; R2=R3=1.206 À; Ai 2=Ai 3=114°) that was 2.6 kcal/mol 
more stable than their D 3 h stationary point (RN 0=1.236 Â). At the QRHF 
CCSD(T) single point level (11), however, these authors found the above D 3h 
structure to become 0.3 kcal/mol more stable than the C 2 v structure above. For 
comparison, we find IP-EOM-CCSD/DZP single point calculations at these 
geometries to increase the D 3 h stability to 2.5 kcal/mol. 

Clearly, the potential energy surface is very flat in the region of the 
minimum, and it is difficult to assert the symmetry of the 2 A 2 ' state definitively. 
Nevertheless, the optimized IP-EOM-CCSD energetic and harmonic frequency 
data suggest that the true minimum structure is of D 3 h symmetry. Even if the 
minimum might be of C 2 v symmetry, it may be of sufficiently shallow nature 
such that the effective geometry still remains D 3 h (12). However, the precise 
nature of the minimum structure may not be especially relevant to the spectral 
features observed experimentally. Due to the flatness of the potential energy 
surface, the full vibrational-electronic wavefunction and energy of the N 0 3 

ground state are expected not to depend sensitively on the true symmetry of the 
lowest point. Such were the findings of Mayer et al. (12), for example, in the 
vibronic analysis of the photoionization of the N 0 3 " anion to the ground state of 
the neutral N 0 3 . 
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Π. Ν 0 3 Neutral Vertical Ionization Energies 

Table II. N 0 3 Vertical Ionization Energies (eV) 
(at D 3 h R N O = 1.230 Â for DIP-STEOM and DIP-EOM) 

Cation DIP-STEOM- DIP-EOM- MC- PE Tentative 
State CCSD CCSD STEP" Spec reassign

DZP TZ2P DZP TZ2P cc-pVTZ trum1' ment 
V 12.04 12.31 12.57 12.93 12.60 12.55 12.55 
λΕ" +0.69 +0.73 +0.83 +0.85 +1.38 +1.50 +0.63 3E" +0.71 +0.73 +0.75 +0.76 +0.86 +0.63 

+0.63 

Έ' +1.08 +1.07 +1.08 +1.08 +1.18 +1.07 +1.07 
V +1.22f +I.24f +1.23f +1.25f +1.50 
V +2.25' +2.30f +2.49f +2.51f 

V +2.29f +2.31f +2.39f +2.40f 

+2.39f +2.47f +2.85 f +2.851 

XE' +3.15 +3.13 +3.04 +3.03 +3.05 +2.99 +2.99 
V +3.83f +3.80f +3.67f +3.66f 

a Reference (7) b Reference (3) 
f Italics indicates states that are forbidden by a one-photon ionization from the neutral 
ground state. 

At the IP-EOM-CCSD/TZ2P optimized geometry, the vertical ionization 
potentials of the neutral N 0 3 ground state were computed by the DIP-STEOM-
CCSD and DIP-EOM-CCSD methods. The results are reported in Table II as 
relative IPs with respect to the absolute first IP. The photoelectron spectrum of 
Wang et al (3) is reproduced in Figure 2. Wang assigned the experimental peak 
regions by DFT calculations, and the assignments are also given in Table II. The 
only other theoretical study in reference to the full PE spectrum are the recent 
M C S T E P calculations of Heryadi and Yeager (7), also tabulated. 

In the DIP-STEOM and DIP-EOM calculations, we consider the five lowest 
singlet and five lowest triplet states of the cation. Cation states that are 
forbidden by ionization from the neutral N 0 3 ground state with a single photon 
are written as italicsf. To be allowed, a state must have a component involving 
the deletion of an electron from the anion l a 2 ' HOMO, as this is the main 
component of the neutral system. Table HI lists the major components of the 
lowest DIP-STEOM-CCSD states of the cation, written as double deletions 
relative to the anion determinant. 

We first observe that, for both the DIP-STEOM-CCSD and DIP-EOM-
CCSD results, the relative ionization potentials are very consistent between the 
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12.50 13.00 13.50 14.00 14.50 
IP (eV) 

Figure 2. Experimental photoelectron spectrum of Wang et al. 
(Reproduced with permission from reference (3). 
Copyright 1997 American Institute of Physics.) 

DZP and TZ2P basis sets. The absolute ionization potentials, however, as 
evidenced by the reported first IP for each method, show a significant 
dependence on the basis set. The IPs are calculated as the difference between 
the IP-EOM-CCSD total energy for the neutral ground state in the particular 
basis and the respective DIP total energy for the various cation states. We think 
this basis set dependence reflects mainly orbital relaxation effects, which can be 
assumed larger in the larger basis set. The anion orbitals are expected to 
describe the neutral system better than the cation system, and hence the neutral 
system will be more stabilized by the larger basis set than the cation. The 
absolute IPs, therefore, are expected to increase with the size of the basis (as 
observed). The constancy with respect to the basis set of the relative excitation 
energies, however, is striking, and it is these that are appropriate for our 
subsequent analysis. 

The relative IPs are also found to agree very well between the DIP-STEOM-
CCSD and DIP-EOM-CCSD methods. The largest deviation is found for the 
two high-lying states of XE' symmetry. The lower of the two XE' states shows 
appreciable dependence on the basis set and differs by 0.4 eV between the DIP-
S T E O M and DIP-EOM results. It is likely that the close proximity of two states 
of the same symmetry causes this higher sensitivity. Nevertheless, for nearly all 
of the states, the agreement is excellent. 

The agreement is also good, for the most part, between the DIP-STEOM 
and DIP-EOM vertical IP results and the assignments of the experimental PE 
spectrum by Wang (3). A notable exception is the XE" state. The DIP-STEOM 
method finds the lE" state to be very close in energy to the 3E" state. This 
result is supported by the DIP-EOM calculations as well. These results, 
however, are in sharp contrast with the DFT calculations of Wang (3) and the 
M C S T E P calculations of Heryadi (7), which both find a singlet-triplet splitting 
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Table III. Character of the lowest DIP-STEOM-CCSD N 0 3

+ states 

Anion: [Core](4ai f( 1 a2")2(3e 04(4e 0 4( 1 e ") 4( 1 a 2 0 2 

Cation State Character (in TZ2P) 

V 79% 
2 χ 10% 

( l a 2 T 2 

(4eT 2 

1E" 68% 
2 χ 15% 

( l e -T ' i l a , - ) - ' 
(4e')- 1(le")- 1 

76% 
2 x 1 1 % 

(le'O-'da,-)- 1 

(4e')- 1(le")- 1 

98% (4e')- 1(la 20- 1 

100% ( l e ' T 2 

of approximately 0.5 eV for these states. The experimental PE spectrum, on the 
other hand, shows a difference of 0.9 eV between the peaks assigned by Wang to 
these two states. 

There is little reason to think the DIP-STEOM or DIP-EOM methods would 
treat triplet states more accurately than singlet states, as both arise naturally in 
the deletion of two electrons from the closed-shell reference. We note the multi-
configurational nature of the DIP-STEOM states collected in Table III; this 
character presents a significant difficulty to the DFT calculations used in 
assigning the experimental spectrum. The MCSTEP calculations, on the other 
hand, provide little treatment of dynamic correlation. The DIP-STEOM and 
DIP-EOM methods, in contrast, offer an extended treatment of dynamic and 
non-dynamic correlation, and these results should be considered the best 
treatment of this collection of vertical IPs so far. 

Both the DIP-STEOM-CCSD and DIP-EOM-CCSD methods suggest that 
the cation lE" state contributes to the sharp lower energy peaks (12.55 + 0.63 = 
13.18 eV), rather than to the broad feature (12.55 + 1.50 = 14.05 eV) to which it 
was assigned by Wang (3) (see Figure 2). Although the allowed vertical IP 
results offer no immediate alternative assignment for the broad features in the 
region of 14.05 eV, we suggest a possible explanation for these features in a later 
section in terms of a vibronic coupling model of the nearby intersecting triplet 
states ( 3 £ " , 3E\ and 3 A 2 ' ) . It will be shown that the equilibrium structures of the 
upper triplet states lie in close proximity to regions of conical intersection with 
the electronic states immediately below. Such regions of intersection can 
dramatically change the observed spectrum from that expected in the Born-
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Oppenheimer / Franck-Condon approximation (43). In particular, states that 
would otherwise be forbidden can borrow intensity from nearby bright states. 
The broad feature at 14.05 eV might thus be explained by the interaction of the 
nominally dark 3 A 2 ' state with the nearby, allowed 3ZT state. 

In order to begin to better understand the vibrational features in the 
experimental PE spectrum, we now consider the DIP-STEOM-CCSD optimized 
geometries for the N 0 3

+ cation states. 

ΙΠ. N 0 3

+ Cation Ground State LAX' 

Table IV. Cation N 0 3

+ ground state lA{ equilibrium geometry 
and vibrational frequencies 

N03* Ground State, D3h DIP-STEOM-CCSD DIP-EOM-CCSD 
A i DZP TZ2P DZP TZ2P 

D 3 h Geometry RNO (Â) 1.241 1.233 1.239 1.230 

Vibrational Frequencies (cm x) 
Sym. stretch a\ 1098 1085 1110 1095 
Umbrella 711 729 719 740 
Asym. stretch e' 1105 1087 1141 1123 
Asym. bend e' 504 508 506 510 

Zero-Point Vib . Energy (eV) 0.31 0.31 0.32 0.32 

For the N 0 3

+ cation ground state ( !ΑΓ), the DIP-STEOM-CCSD and DIP-
EOM-CCSD equilibrium geometries and harmonic vibrational frequencies are 
reported in Table IV. The frequencies are all real and confirm the true minimum 
structure to be of D 3 h symmetry. Both methods find similar geometries and 
frequencies, as well as similar basis set effects. The equilibrium bond distances 
elongate only slightly (<0.003 À) from their respective IP-EOM-CCSD neutral 
ground state geometry (see Table I). Likewise, the adiabatic electronic 
ionization energies decrease by less than 0.003 eV relative to the verticals. We 
thus expect a sharp feature with no vibrational structure for the lowest N 0 3 

ionization peak, as was observed experimentally by both Monks (2) and Wang 
(3). 

Conclusions in the literature about the precise symmetry of the cation 
ground state are nearly as varied as those of the neutral ground state. The 
experimental photoionization spectra indirectly support the D 3 h symmetry; the 
CASSCF (2) and DFT (3) calculations used (respectively) in assigning the 
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spectra find nearly identical D 3 h structures for both the neutral and cation ground 
states. Another very recent DFT study (14) by some of the researchers involved 
in the Wang PE spectrum also calculates a D 3 h minimum structure, with a bond 
length ( R N 0 = 1.220 Â) comparable to that found in this work. Some studies 
(5,7) have considered both D 3 h and C 2 v structures, ultimately arriving at D 3 h 

symmetry, though not conclusively. The C 2 v structures found were Y-like with 
angles deviating only slightly from 120°. 

Most recently, however, an extensive study by Miller and Francisco (6) 
reported R H F CCSD(T) (as well as B3LYP, QCISD, and CCSD) cation C 2 v 

structures that are highly distorted, with large angles Ai 2 =A 1 3 =~141°. Such 
nitrosyl ring-like structures are analogous to the isoelectronic C 0 3 molecule 
(77). Vibrational frequency calculations demonstrate these structures to be true 
minima at these levels of theory. The C 2 v structures in CCSD(T) were more 
stable than the double-saddle D 3 h stationary points by a range of 0.7 to 6 
kcal/mol, depending on the basis set. Note that these C 2 v structures are markedly 
different from other reported C 2 v neutral and cation geometries. 

We have repeated matching RHF CCSD(T) geometry optimizations of the 
cation ground state in the DZP and TZ2P basis sets and have found C 2 v 

structures similar to those of Miller and Francisco. Several factors, however, 
cast doubt on the reliability of the CCSD(T) results. We note the significant 
multi-configurational nature of the XA{ state as computed by DIP-STEOM-
CCSD (see Table III). In addition to the primary (79%) component of the anion 
H O M O (la 2 ' ) double deletion, there are two sizable symmetry-equivalent 
components (totaling 20% of the cation ground state) that are double deletions 
from the lower-lying 4e" orbitals. These latter contributions are difficult to 
recover by correlation in the single-reference CCSD(T) method. Indeed, this 
difficulty is manifest in large T2 amplitudes (greater than 0.2) observed in our 
CCSD(T) calculations; these large coefficients are precisely those associated 
with the 20% components above. Additionally, we find the discrepancy between 
the CCSD(T) and the related CCSD+T (78) total energies to be on the order of 
0.15 eV. This difference is typically less than 0.05 eV, and this casts further 
doubt on the reliability of the CCSD(T) results. 

For comparison, we have performed DIP-STEOM-CCSD and DIP-EOM-
CCSD single point calculations at the RHF CCSD(T)/TZ2P optimized C 2 v 

geometry. The C 2 v structure is less stable by a sizable 17 kcal/mol in DIP-
S T E O M and by 12 kcal/mol in DIP-EOM. Miller and Francisco (6) 
acknowledge that they can offer no explanation why vibrational structure is not 
observed in the first peak of either ionization spectrum, given their significantly 
distorted geometry for the cation ground state. The D 3 h structures by the IP-
E O M - C C S D and the DIP-STEOM-CCSD and DIP-EOM-CCSD methods, on the 
other hand, are nearly identical and are consistent with the experimental findings 
of a single sharp peak with no vibrational structure. 

D
ow

nl
oa

de
d 

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S 
on

 S
ep

te
m

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

4

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



79 

IV. N 0 3

+ Cation Excited State lE" 

Table V. DIP-STEOM-CCSD/TZ2P optimized geometries 
and adiabatic electronic IPs for the lE" state 

State Type Sym. Geometry (R/Â) Adiabatic IP (eV) 
XE" Conical D 3 H R N O - 1.256 +0.659 

% 
Transition 

State 
(TS) 

C2v 
RI= 
R2=R3= 
Ai2=Ai3= 

1.255 

1.256 

118° 

+0.638 

% Min 
Ri= 
R 2=R 3= 
Al2=Ai3= 

1.268 

1.250 

122° 

+0.632 

NOTE: The lE" vertical electronic IP is 12.308 + 0.726 = 13.034 eV. 

NOTE; The adiabatic electronic IPs are reported relative to the lowest vertical IP, 
12.308 eV, as in Table II. 

As seen previously, the vertical DIP-STEOM-CCSD calculations find the 
lE" state to be very close in energy to the 3E" state (see Table II). This result is 
supported by the DIP-EOM-CCSD calculations as well. We again note the 
discrepancy with the DFT calculations of Wang (3) and the MCSTEP results of 
Heryadi (7). These other results may be questioned, however, as previously 
discussed. We are left with the suggestion that the lE" state contributes to the 
lower-energy peaks in the region of 13.18 eV observed in the PE spectrum (see 
Figure 2). 

We now consider the equilibrium geometry of the lE" state. The DIP-
STEOM-CCSD/TZ2P optimized geometries and adiabatic electronic IPs 
(relative to the lowest vertical IP, 12.31 eV) are given in Table V . An extra digit 
is reported to better resolve the energy values. By the adiabatic electronic IPs, 
we mean the difference in total energies between the IP-EOM-CCSD equilibrium 
ground state of the neutral N 0 3 and the DIP-STEOM-CCSD optimized 
stationary point of the cation N 0 3

+ ; zero-point vibrational corrections are not 
included. 

Although first optimized under the restriction of D 3 h symmetry, the doubly 
degenerate lE" electronic state will distort by the Jahn-Teller theorem (79,80). 
In symmetric non-linear molecules, there is always at least one non-totally 
symmetric vibrational coordinate that will split the potential energy surface for a 
degenerate electronic state such that the minima are not at the high-symmetry 
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V 

Figure 3. Cross section of a Jahn-Teller distorted potential energy surface (V) 
for a U3h degenerate electronic state (E' or E") 

in a non-symmetric (e') vibrational coordinate (Q) 

position (79). For the case of D 3 h symmetry, all (degenerate) E' and E" 
electronic states will split in the directions of the (degenerate) e' vibrational 
coordinates. For an excellent discussion of Jahn-Teller distortion in the specific 
example of D 3 h symmetry, see Herzberg (80). The relevant points of the 
discussion will be summarized here. We will focus on the topological features 
of the electronic potential energy surfaces. 

Figure 3 shows a cross section of the potential energy surface for a D 3 h 

degenerate electronic state (E' or E") in one of the coordinates of a non-totally 
symmetric, degenerate e' vibrational mode. The point labeled Conical in the 
center of the graph is the high-symmetry D 3 h nuclear configuration. In the non-
symmetric coordinate, the two components of the degenerate electronic state 
cross each other at a non-zero angle (80)\ the resulting stationary points are 
necessarily, therefore, shifted to configurations of lower symmetry. The 
magnitude of the distortion increases with the strength of the vibrational-
electronic, or vibronic, interaction. 

Regardless of the strength of the Jahn-Teller distortion, however, the full 
potential energy surface in terms of all nuclear coordinates retains the full D 3 h 

symmetry of the nuclear point group (80). The ί/iree-dimensional potential 
energy surface as a function of both components of an e' vibrational mode 
retains a matching symmetry. There are three equivalent cross sections (through 
the D 3 h center point) that are identical to Figure 3; thus, there are three 
equivalent structures for each Jahn-Teller distorted state. The three cross 
sections are 120° "apart", and each set of equivalent structures falls on the points 
of an equilateral triangle (if viewed from above). A contour plot of such a D 3 h 

Jahn-Teller surface as a function of the two e' vibrational components can be 
found in Herzberg (80) (Fig. 17b, p. 48). 

The adiabatic potential energy surface below the intersection point 
possesses three equivalent minimum regions. One of these surface minima is 
seen in the cross section in Figure 3 and is labeled as point M i n . The three 
minima on the surface are separated by three saddle-point transition states. Point 
TS in the Figure 3 cross section is the transition state between the two other 
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Table VI. DIP-STEOM-CCSD/TZ2P vibrational frequencies (cm1) 
at the minimum (^2) and transition state (^2) C 2 v stationary points, 

Jahn-Teller split from the lE" D 3 h conical intersection 

D3h Vibrational Mode 1E"Min(xA2) XE" TS(%) 
Sym. stretch a{ αχ 1053 αχ 1050 
Umbrella a2" b2 652 bx 656 

Asym. stretch • « · { ax 

bx 
899 
856 

αχ 
b2 

912 
839 

Asym. bend αχ 
bx 

503 
418 

αχ 
b2 

578 
435i 

surface minima not shown (symmetry-equivalent to point Min). Likewise, point 
Min is connected to the other two surface minima by the two transition states 
(symmetry-equivalent to point TS) not shown. The minima and transition states 
are joined together in the center by a conical peak, and hence the term conical 
intersection is given to the exact crossing region, in this case the point of high 
symmetry. Note that as a function of all nuclear coordinates, the crossing 
region, rather than being a single point, forms a multi-dimensional surface. 
Lastly, an inverted conical, upper surface is formed from the "inner walls" of the 
lower surface. This artificial upper surface has no minimum in the sense of a 
region with zero gradient, and its lowest point is a point of conical intersection. 

Allowing the symmetry of the D 3 h

 lE" conical intersection point to relax, we 
obtain the transition state (*B2) and the minimum (lA2) structures, both of C 2 v 

symmetry (Table V) . Both C 2 v Jahn-Teller structures are found to be Y-like, 
only slightly distorted from the D 3 h configuration. The relative energies of the 
states can be seen in the tabulated adiabatic electronic IPs. We note that upon 
lowering the symmetry from D 3 h to C 2 v , the two states comprising the degenerate 
E" (or #0 state fall into different symmetry groups. Thus, by specifying the 
proper symmetry at a slight distortion, the diabatic transition state can be 
optimized without collapsing to a minimum structure. 

To verify the nature of the two states, the harmonic vibrational frequencies 
at the minimum and transition state stationary points are reported in Table VI . 
For these states, the calculated frequencies in the harmonic approximation may 
be expected to be similar to those obtained from a full Jahn-Teller description, 
since the Jahn-Teller distortion in this case is relatively small. The deeper-lying 
XA2 state is demonstrated to be a true minimum in all directions. The slightly less 
stable (0.006 eV) lB2 state retains a single imaginary frequency in one 
component of the former e' asymmetric bend mode and is thus a transition state, 
in this case to pseudorotation between the equivalent minima. On the full 
potential energy surface, the three equivalent minima and three equivalent 
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transition states correspond to the three possible positions for the unique C 2 v 

axis. To verify that the diabatic states do in fact lie on the same adiabatic 
surface, the transition state structure was slightly distorted in C s symmetry in 
either "direction" of the imaginary asymmetric bend mode. Upon optimization, 
both distortions did indeed converge to a C 2 v structure equivalent to the 
minimum in Table V , but with the unique axis on one of the other Oxygen atoms. 

The non-degenerate a{ and ai" modes are not subject to the Jahn-Teller 
instability. The a{ symmetric stretch frequency agrees well with the 1050 cm - 1 

progression observed the Wang PE spectrum (see Figure 2). The differences 
between the geometries in Table V and the neutral ground state geometry (D 3 h 

R N 0 = 1.230 Â) are sufficiently large such that vibrational structure may be 
expected in the photoionization. In the N 0 3 ~ anion photoionization spectrum 
(76), for example, a similar a{ vibrational progression was simulated in the 
Franck-Condon approximation with a comparable deviation in bond length of 
0.03 ± 0.01 A . 

Finally, we note the near degeneracy of the lE" and 3E" states, and thus 
spin-orbit coupling is also expected to play some role in the vibrational 
dynamics. 

V . N 0 3

+ Cation Excited States 3E\ 3E\ and 3 A 2 ' 

The three lowest triplet states of the cation, 3E", 3E\ and 3A2\ lie rather 
close to one another in energy and will be examined together. As we saw 
previously, the 3E" and 3E' vertical IPs as computed by both the DIP-STEOM-
CCSD and DIP-EOM-CCSD methods (see Table II) agree fairly well with the 
peak regions in the PE spectrum. The broad feature near 14.05 eV (see Figure 
2), assigned by Wang to XE'\ however, could not be explained in terms of the 
allowed vertical states. The nominally dark 3 A 2 ' state, although falling near this 
region, does not contain any character of a deletion of an electron from the anion 
l a 2 ' H O M O (see Table III) and should therefore not be accessible by a single 
photon ionization from the neutral. As we shall suggest below, however, 
vibronic coupling through a very nearby conical intersection with the allowed 
3E' state may cause the appearance of substantial intensity borrowing lines 
associated with the 3A2 state. Likewise, a conical intersection of the 3E' with the 
3E" state may affect the 3E' vibrational structure, altering it significantly from 
that expected in the Franck-Condon approximation. 

The DIP-STEOM-CCSD/TZ2P optimized geometries of all components of 
the three states are collected in Table VII. Vibrational frequency calculations 
verify the 3A2 state to be a true minimum in D 3 h symmetry. The doubly 
degenerate 3E" and 32T electronic states, on the other hand, will undergo Jahn-
Teller distortion in the non-symmetric e' vibrational coordinates. The D 3 h 
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conical intersection structures are found to split into minimum and transition 
state stationary points of C 2 v symmetry. The minimum structures were verified 
to exhibit real frequencies in all directions, while the transition states retained a 
single imaginary frequency in a former e' coordinate. 

The 3E" state splits into a "one-long-two-short" (1L2S) true minimum and a 
"one-short-two-long" (1S2L) transition state. The magnitude of the distortion is 
somewhat larger than seen previously in the XE" state. In contrast, the 3E' state 
shows a reversal of the ordering of the two C 2 v configurations; it is the 1L2S 
configuration that is the transition state between the equivalent 1S2L minima. 
The magnitude of the 3ZT Jahn-Teller distortion is also significantly larger than 
for the 3E" state. 

In contrast to the 3E" 1L2S minimum in DIP-STEOM-CCSD, a recent DFT 
study (14) reported a significantly distorted 1S2L structure for the 3E" state 
(Ri=1.152 Â; R2=R3=1.315 A ; A 1 2 =A 1 3 =132°). It is unclear if the stationary 
point was verified to be a true minimum by vibrational frequency calculations. 
As an additional confirmation of the DIP-STEOM-CCSD results, we also 
performed DIP-EOM-CCSD geometry optimizations and vibrational frequency 
calculations on the 3E" state. The DIP-EOM method finds C 2 v minimum and 
transition state structures nearly identical to the DIP-STEOM results in Table 
VII. 

The proximity in energy of the 3E", 3E\ and 3 A 2 ' states suggests the 
possibility that these electronic surfaces may approach one another in the nuclear 
coordinates or even cross in conical intersections. The approach of the surfaces 
leads to a breakdown of the Born-Oppenheimer approximation (81,82), and the 
adiabatic potential energy surfaces can couple residually through the nuclear 
kinetic energy operator. Vibrational motion need no longer be confined to a 
single adiabatic electronic surface, but rather, can proceed on a number of 
surfaces simultaneously (43). The resulting spectra can exhibit a multitude of 
intensity borrowing lines that were nominally forbidden, and the Franck-Condon 
and adiabatic lines themselves can be significantly altered in position and 
intensity. 

For an extensive study of the effects of vibronic coupling on optical spectra, 
we refer the reader to the beautiful work by Kôppel, Domcke, and Cederbaum 
(43). A vibronic coupling model has been applied with success (12) to the N 0 3 

2 A 2 ' band of the anion photoionization (76). A detailed treatment of these effects 
in the N 0 3

+ system is beyond the scope of this work, but we shall substantiate 
the suggestion that conical intersections may play a critical role in explaining the 
broad features in the N 0 3 PE spectrum. We expect to present a more detailed 
analysis in a future study. 

Here we wish to examine the extent to which the 3E", 3E', and 3 A 2 ' 
electronic potential energy surfaces approach one another in the nuclear 
coordinates. Table VII presents the relative energies of the five components 
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Figure 4. Graph of Table VII, the DIP-STEOM-CCSD/TZ2P relative energies 
of the components of the 3E", 3E', and 3 A 2 ' states at each optimized geometry 

of these states at each of the optimized geometries. The state for which the 
geometry was optimized is indicated by the boxed energy in each row. The 
geometries are written in order of increasing energy of the optimized state. For 
comparison, we have also included the IP-EOM-CCSD/TZ2P equilibrium 
geometry of the neutral N 0 3 ground state and the vertical IPs (referenced 
relative the 3E" state). Note that for the E" and E' states, the high-symmetry 
conical intersection stationary point is tabulated in addition to the Jahn-Teller 
minimum and transition state structures. 

The proximity of the electronic states in Table VII is perhaps better 
visualized by the plot in Figure 4. Each "column" of points in the graph 
indicates the five energy levels at a particular optimized geometry. Note that the 
horizontal axis does not represent some continuous deformation in geometry but 
rather is simply the optimized stationary points written serially in order of 
increasing energy of the optimized state, as in Table VII. Dashed lines follow 
the state of a particular orbital character rather than follow the adiabatic potential 
energy surface. Table VII and Figure 4 thus correspond to a diabatic 
representation of the surfaces. The major orbital components of each state 
remain fairly well preserved at the different geometries and thereby make this 
type of following viable. 
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Readily visible in Figure 4 is the difference in magnitude of the Jahn-Teller 
effect for the 3E" and 32T states. At the optimized 3E' minimum (3#i), for 
example, the splitting between the lower (3BÛ · ) and upper ( 3 Ai; x) Jahn-Teller 
surfaces is relatively large (-25 kcal/mol). At the 3E" minimum ( 3A 2), on the 
other hand, the splitting between the lower ( 3 A 2 ; •) and upper ( 3 B 2 ; •) surfaces is 
substantially smaller (~2 kcal/mol). The barrier to pseudorotation for the 3E' 
state (0.48 kcal/mol) is also larger than for the 3 £ " state (0.14 kcal/mol). 

We next observe that near its stationary points ( 3 A 2 , 3B2I

 3E"), the ground 
triplet electronic surface remains fairly well separated from the other, higher-
lying triplet surfaces. It can thus be expected that the lower-energy vibrational 
features associated with this state might be relatively well represented under the 
adiabatic approximation (43) and treating this surface independently of the other 
triplet surfaces. (Note, however, that due to the near degeneracy of the 3E" and 
XE" surfaces, spin-orbital coupling with this state may become important.) The 
relative simplicity of the vibrational structure in this region of the PE spectrum is 
consistent with 3E" state being vibronically independent of the other triplet 
states. 

The same cannot be said for the higher-lying 3E' and 3 A 2 ' surfaces. At its 
minimum structure (3#i), the 32T surface is extremely close in energy (0.3 
kcal/mol) to the lower component of the 3E" surface (see Figure 4). The upper 
component of the (nominally lower) 3E" surface has already in fact crossed 
through and lies 2.8 kcal/mol above the 3E' minimum. Similarly, at its minimum 
structure, the 3 A 2 ' surface approaches very closely the lower-lying 3E' surfaces 
(0.8 kcal/mol separation). Conical intersections are thus expected in close 
proximity to the 3E' and 3A2 equilibrium structures. 

We went about calculating these expected regions of intersection by 

minimizing the energy functional EL + E2 + X(EX -E2f. Optimization of this 
functional approximates the lowest point on the intersection surface. The 
penalty parameter λ is chosen as some suitably large value, typically 104 to 106. 
The results for the (3Ε' with 3E") and the ( 3 Α 2 ' with 3E') intersections in C 2 v 

symmetry are presented in Table VIII. Four intersection regions were calculated 
for the two components of the 3E' state with the two components of the 
(nominally lower) 3E" state. Likewise, two intersection regions were calculated 
for the crossing of the 3 A 2 ' state with the two components of the (nominally 
lower) 3E' state. 

Near both the minimum and transition state stationary points of the 3E' 
surface, there are conical intersections with the upper and lower portions of the 
3ΖΓ' surface. (By upper and lower, we mean the portions above and below the 
center D 3 h region as in the cross section in Figure 3.) As predicted, an 
intersection region with the lower component of the 3E" surface is found in very 
close proximity to the 3E' minimum structure. A second intersection is found at 
a nearby geometry with the upper 3E" component. Two more intersection 
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Table VIII. DIP-STEOM-CCSD/TZ2P conical intersections of the 
(3Ε' with 3E ") and ( 3 Α 2 ' with 3E') surfaces in C 2 v symmetry 

"Upper" State" Intersecting State Intersecting State 

întersection 
(kcal/mol) 

Geometry 
(R/Â) 

3E'Min(3Bi) 

+0.636" 

R,= 1.161 
R 2=R 3= 1.321 
A 1 2 =A 1 3 = 119.6° 

3E"(3B2) 

+0.653 

ARj= -0.002 
AR 2=AR 3= +0.003 
ΔΑ 1 2 =ΔΑι 3 = -0.2° 

3E"(3A2) 

+1.378 

ARi= +0.024 
AR 2=AR 3= -0.023 
ΔΑ 1 2 =ΔΑ 1 3 = +0.6° 

V b 

-'-'intersection 
(kcal/mol) 

Geometry 
(R/À) 

3E'TS(%) 

+1.117" 

Ri= 1.339 
R 2=R 3= 1.219 
A, 2 =A 1 3 = 123.0° 

3 £ " ( 3 A 2 ) 

+1.812 

AR:= +0.025 
AR 2=AR 3= -0.007 
ΔΑ 1 2 =ΔΑ 1 3 = +1.5° 

3E"(%) 

+1.939 

A R 1 = -0.024 
AR 2=AR 3= +0.008 
ΔΑΐ2=ΔΑ 1 3 = -1.7° 

întersection 
(kcal/mol) 

Geometry 
(R/Â) 

3 A 2 ' M i n 

+8.350" 

R N 0 = 1.269 

A= 120° 

3Ε'(3Αύ 

+8.366 

A R 1 = -0.006 
AR 2=AR 3= +0.004 
ΔΑ 1 2 =ΔΑ 1 3 = -0.02° 

3E'(%) 

+8.368 

AR\= +0.006 
AR 2=AR 3= -0.002 
ΔΑ 1 2 =ΔΑ 1 3 = +0.1° 

a Energy and geometry of 32T and 3 A 2 ' stationary points from Table VII. 
frThe same zero reference is used as in Table VII ( 3 £ " vertical IP). 

regions are found near the E' transition state structure. Clearly the vibrational 
dynamics of the 3E' state can sample these nearby conical intersection regions. 
We thus expect a profound impact on the spectral vibrational structure 
associated with the 3E' state. This suggestion is consistent with the broad feature 
at 13.62 eV in the experimental PE spectrum (see Figure 2), which may be 
composed of a multitude of vibronic lines. 

The intersections of the 3 A 2 ' state with the two 3 £ " components immediately 
below are also in astonishingly close proximity to the 3 A 2 ' equilibrium structure. 
The intersection regions in Table VIII are raised in energy relative to the 
minimum by less than 0.02 kcal/mol, and the minimum and intersection 
structures are nearly indistinguishable. This concurrence of the minimum and 
conical intersection regions can again have great impact on the observed 
vibrational structure. 
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In particular, this nominally dark A 2 ' state is expected to gain intensity 
through vibronic interaction with the bright 3 IT state. The weak, broad feature 
near 14.05 eV (see Figure 2) that could not be accounted for in terms of the DIP-
STEOM-CCSD and DIP-EOM-CCSD allowed vertical IPs might thus be 
attributable to the vibronically coupled 3A{ state. A tentative reassignment of 
the PE spectrum is made in Table II. Here we make these suggestions, based on 
the proximity of the conical intersections near the 3E' and 3 A 2 ' equilibrium 
structures; we reserve a full detailed analysis for a future study. 

Summary and Conclusions 

The NO3 vertical ionization spectrum was calculated by the DIP-STEOM-
CCSD and DIP-EOM-CCSD methods. These methods avoid artifactual 
symmetry breaking of the reference wavefunction by starting from the symmetry-
correct nitrate anion orbitals and provide a balanced treatment of dynamical and 
non-dynamical correlation effects. In general, the DIP-STEOM and DIP-EOM 
results agree well with the experiment of Wang (3) and with previous theoretical 
assignments (3,7). However, in our calculations, the vertical transition to the 
XE" state nearly coincides with that of the 3E" state, in contrast to previous 
studies. Our calculations therefore do not support the assignment of the broad 
experimental feature near 14.05 eV to the XE" state. 

Optimization of the cation ground state XA{ geometry by the DIP-STEOM-
CCSD and DIP-EOM-CCSD methods yields a D 3 h true minimum structure that is 
nearly identical to that of the D 3 h IP-EOM-CCSD neutral ground state 2 A 2 ' . 
These matching geometries are consistent with the spectra of both Monks (2) and 
Wang (3), which observed a single sharp peak for the lowest ionization of N 0 3 . 
We have considered the mechanism of Jahn-Teller distortion for the D 3 h states of 
E" and E' symmetry. In agreement with Herzberg (80), the D 3 h conical 
intersection stationary point distorts into three equivalent C 2 v minimum 
structures, connected by three equivalent C 2 v transition states to pseudorotation. 

Optimization of the 3E", 3E\ and 3 A 2 ' states in DIP-STEOM-CCSD yields 
some very interesting results. While the 3E" surface remains fairly well 
separated from the other triplet surfaces near its stationary points, the 3E' and 
3 A 2 ' states exhibit conical intersections at geometries nearly identical to their 
equilibrium structures. Strong non-adiabatic effects are expected in the 
vibrational spectra associated with these states. These effects may explain the 
broad envelope of the 3E' state observed in the PE spectrum, as this may be a 
collection of a multitude of vibronic lines. In addition, the nominally dark 3 A 2 ' 
state is expected to gain intensity by vibronic interaction with the intersecting, 
bright 3E' state. This coupling would explain the weak, broad feature near 14.05 
eV that is missing from the allowed vertical ionization results. A tentative 

D
ow

nl
oa

de
d 

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S 
on

 S
ep

te
m

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

4

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



89 

reassignment of the PE spectrum of Wang (3) is proposed. A full vibronic 
analysis of the low triplet surfaces is warranted in order to verify these 
suggestions. 

We also suggest more refined experimental studies of the N 0 3

+ cation states. 
The Wang PE spectrum (5) is of modest resolution and involved "stripping" of a 
strong N 0 2 signal. (The combined N 0 3 - N 0 2 spectrum was recorded from 
pyrolysis of N 2 0 5 . ) This stripping may introduce inaccuracies, particularly in the 
peak intensities. The cation 3 IT and 3 A 2 ' states may prove especially attractive 
for experimental study due to the remarkable concurrence of their equilibrium 
structures and conical intersections with the electronic surfaces immediately 
below. 
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Chapter 5 

Coupled Cluster Methods for Bond-Breaking 

Martin Head-Gordon, Troy Van Voorhis, Steven R. Gwaltney, 
and Edward F. C. Byrd 

Department of Chemistry, University of California Berkeley, and Chemical Sciences 
Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94726 

A class of coupled cluster methods designed to describe bond
-breaking processes are described. The approach taken 
involves first approximating the complete valence space 
Schrödinger equation to account for static electron 
correlations. For simplicity and tractability, the coupled 
cluster wave functions are restricted to double substitutions 
within this active space. Such reference functions are capable 
of correctly breaking only a single chemical bond, when 
developed within conventional coupled cluster theory. There 
are, however, at least two modifications to the theory that 
allow this limitation to be largely overcome. These 
modifications are described and discussed. A perturbative 
approach to correct active space coupled cluster methods for 
dynamical correlations is then described. The performance of 
these theories is tested on some model problems to illustrate 
their current capabilities and limitations. 

© 2002 American Chemical Society 93 
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Introduction 

Single reference electronic structure methods are most widely used in 
quantum chemistry today. This is because of their ease of application; they 
require no molecule-specific customization unlike multireference methods where 
either reference configurations or an active space must be chosen for each 
problem at hand. However, computationally tractable single reference methods, 
ranging from simple mean-field Hartree-Fock theory to quite sophisticated 
methods such as CCSD(T) fail to correctly describe potential energy surfaces for 
bond-breaking. This is manifestly true for calculations based on restricted 
orbitals where incorrect dissociation products are obtained. The point is perhaps 
more debatable for unrestricted (spin symmetry-broken) orbitals where potential 
curves are qualitatively correct using single reference methods. However 
beginning at equilibrium with a pure spin state and finishing at dissociation with 
a statistical mixture is also unsatisfactory. By contrast, multireference electronic 
structure methods are well-suited to the description of global potential energy 
surfaces, apart from their inherent difficulty of application. 

There is hence much incentive to develop electronic structure methods that 
retain the simplicity of use of existing single reference theories, but address their 
deficiencies for the description of bond-breaking processes. This chapter reports 
our recent progress towards this objective. Due to its short length, we make no 
pretense of reviewing the work of others, but instead seek to provide an 
overview of our recent work with some selected results. Our general strategy is 
as follows. We seek to partition electron correlation effects into nondynamical 
correlations associated with (relatively few) low-lying electron configurations, 
and dynamical correlations associated with the collective effect of (relatively 
many) high-energy configurations. We define the nondynamical correlation as 
being the difference between the mean field Hartree-Fock energy, and the energy 
obtained by solving the Schrôdinger equation in the space of valence orbitals 
only. This could be the valence minimum basis, or the perfect pairing active 
space that supplies one correlating virtual orbital for each occupied valence 
orbital. The dynamical correlation is then the difference between the valence 
space Schrôdinger energy, and the energy associated with solving the 
Schrôdinger equation in the full orbital basis. 

While the general strategy of dividing electron correlations into 
nondynamical and dynamical effects is similar to that of multireference methods 
(1) such as complete active space (CAS) methods (2,3), there is a crucial 
difference. Specifically, our insistence on the use of the full valence or perfect 
pairing active space means that there is no need to customize the number of 
active orbitals for each problem. In other words, techniques based on this 
procedure will meet the requirements of a theoretical model chemistry. Of 
course this means that much larger active spaces will be generated for a given 
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molecule than would typically be employed in a standard C A S calculation. As a 
result, exact solution of the valence space Schrôdinger equation (which scales 
approximately exponentially with the number of valence space electrons) is 
intractable with our approach. Instead, we must approximate the valence space 
Schrôdinger equation as the initial step, and then subsequently approximate the 
correction for dynamical correlations. Our approaches to each of these two steps 
are described in each of the following main sections, and are performed within 
the framework of coupled cluster theory. This ensures proper extensivity of the 
approximations with respect to the number of electrons in the system. 

How good can a CCD wave function be? 

The trial function that we have chosen to focus on is of the coupled cluster 
doubles (CCD) type (4-6): 

Ί * ο ο ο ) = ̂ | φ > W 
Here the excitation operator promotes pairs of electrons from filled to empty 
orbitals. We note in passing that a generalized T 2 operator, which includes 
creation operators for filled orbitals, and destruction operators for empty orbitals 
is exact (7-9): however this form cannot yet be used tractably, so we do not 
consider it in this work. 

We anticipate that the orbitals in the reference single determinant | φ ) will 

be optimized to minimize the trial energy (10,11), so we shall neglect single 
substitutions. This also makes optimization within an active space possible (12). 
While the C C D wave function is well-known, and has desirable properties such 
as recovery of a substantial fraction of electron correlation at equilibrium 
geometries and proper extensivity with size, it has not traditionally been viewed 
as a suitable candidate for bond-breaking. This is because failures of 
conventional coupled cluster theory are well-known for bond-breaking (13). 

To investigate whether this is due to limitations of the C C D wave function, 
or the way in which the C C D energy and amplitudes are conventionally 
obtained, we have recently performed variational C C D calculations (14). 
Variational C C D calculations are a restricted form of full configuration 
interaction (with factorial cost), because the energy expectation value includes 
contributions from all orbital replacements as high as the number of electrons: 

^var-CCD = ^ C C D |#| ^ C C D ^ / ( ^ C C D | ^ C C D } (2) 

As an example of the results that are obtained in this way, Figures 1 and 2 
illustrate the potential curves obtained for homolytically dissociating the two 
single bonds in the water molecule by full CI, conventional CCD, and variational 
CCD, in two basis sets. 
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25.0 

R(O-H) [Angstrom] 

Figure 1. Variational CCD (VCCD), conventional CCD, and full CI (FCI) 
calculations on the double dissociation ofH2Ot in the STO-3G basis. The 
experimental bond angle (104.5°) and FCI Brueckner orbitals were used. 

25.0 

" 1.5 2.0 2.5 3.0 3.5 4.0 
R(O-H) [Angstrom] 

Figure 2: Same calculations as Figure lt but in a double zeta (DZ) basis. 

There are two principal conclusions that can be drawn from these results: 
While conventional C C D fails dramatically, the variational C C D 
calculations are well-behaved at long bond-lengths. The difficulties with 
conventional C C D for this 4 active electron problem are clearly a result of 
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solving for the energy in a nonvariational fashion. Note that conventional 
C C D is qualitatively correct for a 2 active electron process such as a single 
bond-breaking, while it fails even more dramatically in a 6 active electron 
process such as a triple bond-breaking. 

• The errors associated with variational C C D are significantly larger in the 
double zeta basis (Fig. 2) than in the minimal basis (Fig. 1). This simple 
trial wave function can do a near quantitatively accurate job of 
approximating the valence space (static) correlation (which is all that is 
present in the STO-3G basis), but is less successful in reproducing both 
static and dynamic correlation in the larger D Z basis. 
These results and conclusions suggest a possible path towards practical 

coupled cluster methods for bond-breaking. The simple C C D trial function is 
potentially useful, i f we are able to better approximate the variational C C D 
solution (conventional C C D is inadequate beyond single bond-breaking). 
Furthermore, the C C D trial function should be applied within a valence active 
space, because it performs far better in the minimal basis than the D Z basis. 
From the point of view of approximating the Schrôdinger equation, we are being 
led to first approximate the valence space (CASSCF) equation, and then 
subsequently the remaining dynamical eon-elation. We turn to the first of these 
tasks below. 

How difficult must a CCD energy functional be? 

How might we approximate the variational C C D approach discussed above, 
without incurring its factorial computational cost? Let us briefly re-examine the 
conventional C C D energy ansatz as a prelude to discussing how we have chosen 
to go beyond it. In conventional C C theory the equations that determine the 
doubles amplitudes can be obtained by minimizing the following functional: 

In this expression, the variables to be minimized are the usual doubles 
amplitudes (T 2), the corresponding bra amplitudes (A 2 ) , and the reference 
orbitals. In Eq. (3), the T 2 amplitudes are used to define a similarity transformed 
Hamiltonian: 

Since the bra amplitudes occur only as linear terms, the resulting C C D equations 
for the ket amplitudes (T 2) are independent of A 2 : 

(3) 

(4) 

(5) 
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Indeed, the Λ 2 amplitudes are not required to determine the C C D energy. They 
arise in analytical derivatives of the energy as the so-called Z-vector (75). 

Extended coupled cluster (ECC) theory (16,17) is a powerful existing 
framework for going beyond the standard coupled cluster energy ansatz, (3) In 
E C C theory (limited to double excitations, here), the energy is obtained by 
minimizing the following functional with respect to the bra (Λ 2) and ket (T 2) 
amplitudes: 

-ECCD = (βΑ2Φ Η (6) 

Comparing Equations (3) and (6), it is evident that the usual C C D expression is 
the leading term in the E C C D energy, when exp(A 2) is expanded as a Maclaurin 
series. Therefore E C C D and C C D will be similar when the amplitudes are small 
(when C C D works well). For strongly correlated problems such as bond-
breaking, it is likely that the more even-handed treatment of bra and ket degrees 
of freedom would permit the E C C D energy to much better approximate the 
variational C C D energy than C C D . To our knowledge, molecular calculations at 
the E C C D level have not yet been reported. This is presumably because of the 
large increase in both algebraic and computational complexity that is inherent in 
the minimization of Eq. (6) Indeed, analysis of the E C C D functional (18) 
suggests that computational cost will scale as iV 1 0 , far worse than the N6 scaling 
of C C D in a straightforward implementation. 

However, there is an interesting intermediate step between standard C C D 
and E C C D . This is a model that includes terms quadratic in Λ 2 in the bra 
function. We term this energy functional the quadratic coupled cluster doubles 
(QCCD) method (19): 

^QCCD = ((1 + Α 2 + 1 Α ! ) Φ Η Φ) ω 

The Q C C D energy is to be made stationary with respect to both the ket (T 2) and 
bra (A 2 ) degrees of freedom, as well as the orbitals. In this respect it is a 
generalization of the conventional optimized orbital C C D method (11). 
However, the extra term relative to C C D introduces new physics, such as the 
coupling of the A 2 and T 2 amplitudes. For example, the equations for the T 2 

amplitudes can be symbolically written as: 

^(ΐ + Λ 2 ) φ ^ ΗΦ^ = 0 (8) 

This coupling will be weak when the A 2 amplitudes are small (CCD will be 
recovered with only minor differences), but when the amplitudes are large as in 
bond-breaking, this may lead to energies that are not as prone to nonvariational 
collapse. 

It is beyond our present scope to discuss the Q C C D equations or their 
computational implementation in any further detail. This task is addressed in 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

5

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



99 

both published (19) and pending (20) publications. However, let us note some 
general features. The Q C C D energy and associated amplitudes can be obtained 
in computational effort that scales with the 6 t h power of molecular size, and 
storage that scales as the 4 t h power of molecular size. These are the same 
scalings that conventional C C D exhibits, and therefore Q C C D calculations will 
generally be feasible on molecules for which C C D is feasible. With a valence 
active space, the cost ratio is a small factor that is independent of basis set size. 
In the full space, the extra computation increases as the basis set size increases 
because one additional step in QCCD scales as V 6 where V is the number of 
(active) unoccupied orbitals. By contrast the rate-determining step in C C D 
scales as 02V*. Still, QCCD is dramatically less expensive than E C C D ! 

The question then is whether QCCD is robust enough to be faithful to 
variational C C D in bond-breaking problems. For double bond-breaking in water 
(see Fig. 1), the calculated energy differences between Q C C D and V C C D do not 
exceed 5 microHartrees (19)\ On a plot like Fig. 1 such differences are not even 
visible, and QCCD is thus an unqualified success. A second and more 
challenging test is triple bond-breaking in the nitrogen molecule, as shown in 
Fig. 3. These are also minimal basis calculations, because we know from the 
previous section that the performance of the C C D wave function for bond-
breaking degrades when used out of the valence space. 

50.0 

-200.0 
1.0 1.5 2.0 

R(N-N) [Angstroms] 
2.5 3.0 

Figure 3. Calculations of the triple bond dissociation ofN2 in the STO-3G 
basis, using full CI, conventional CCD, variational CCD, and quadratic CCD. 
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The results contained in Figures 3 are also quite encouraging. For N 2 

dissociation, the QCCD results are qualitatively excellent, but there are 
noticeable differences between variational C C D and QCCD, which amount to 
roughly 15 kcal/mol as dissociation is approached. The difference between this 
test case, and the water double dissociation discussed above reflects the role of 
A 2 terms (which are neglected in QCCD) in the N 2 problem (corresponding to 
6-electron contributions), while they are insignificant in the double bond-
breaking problem. 

Our conclusion at this stage is that Q C C D represents a very significant and 
yet tractable improvement upon CCD, when used with orbital optimization in the 
valence space. In this sense, our first generation valence optimized orbital C C D 
method (12) is clearly superceded by Q C C D in the valence space. We have 
implemented Q C C D (both in active spaces and in the full space) within the 
correlation module of the Q-Chem program (21). Both energies and gradients 
are available, as the latter can be immediately computed from the 1- and 2-
particle density matrices (and an energy-weighted density matrix) once the 
optimum orbitals and amplitudes have been determined. 

How simple can a CCD wave function be? 

To this stage our cluster wave function has been left in the general form of 
Eq. (1), with the restriction that double substitutions are confined to an active 
space. Within the active space, the double substitution operator couples together 
all pairs of occupied orbitals with all pairs of virtual orbitals. Physically we 
expect this description to be more complicated than is essential for a 
qualitatively correct description of the main correlations in bond-breaking. As is 
evident in minimal basis dissociation of H 2 , they are surely the alpha-beta bond-
antibond correlations necessary to permit homolytic bond separation. 

So, restricting ourselves to the 1:1 perfect pairing active space, the simplest 
possible version of a C C D wave function would be to retain only the linear 
number of excitations needed to provide alpha-beta bond-antibond correlations: 

valence 
pairs 

i 
This defines the C C D perfect pairing (PP) operator (22,23). Mathematically it 
converts the coupled cluster equations into the uncoupled cluster equations", 
because the amplitude equations for the valence pairs are no longer coupled to 
each other. The only coupling is indirect through the orbital optimization 
procedure. As a result of this decoupling, we anticipate (and it is true) that the 
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nonvariational catastrophes of conventional C C D will be eliminated. Of course 
C C D itself is exact for a single pair. 

Perhaps the next simplest form of trial C C D wave function would be to 
retain the 1:1 active space, but reintroduce some coupling between valence 
electron that are associated with different pairs. The simplest way to do this 
defines what we have termed the imperfect pairing (IP) operator (24): 

valence 
pairs t 

np =fr + Σ (VK*r+<r M r ) <io> 
i*j 

We have used the unitary group generators, Ey* = a^at +ο£*αγ for conciseness. 

The IP form of the C C D operator is somewhat analogous to the G V B - R C I wave 
function, although there are important distinctions. For example, the cluster 
equations for this simplified C C D operator directly couple the different pairs 
(unlike PP), and accordingly the nonvariational failures associated with full C C D 
remain in the IP model (24). 

Given the much simpler form of Eq. (10), which involves only a quadratic 
number of amplitudes, relative to Eq. (1), it is also more straightforward to 
understand how and why conventional C C D exhibits difficulties for multiple 
bond-breaking. The simplest model problem to examine is a double bond-
breaking, as in the separation of ethylene into 2 triplet methylene fragments, in a 
2:2 active space comprising the 2 bond orbitals. For this problem, it is possible 
to show that the trial C C D operator, Eq. (10), does not yield a physically correct 
solution at dissociation. In particular, because there is a forced relation between 
double and quadruple excitations through the exp(F2) form of the wave function, 
we find a spurious ionic contribution at dissociation (25). This is a result of the 
restricted form of the cluster wave function, and is, in a practical sense, a 
fundamental problem with limited cluster wave functions for bond-breaking. 

While a detailed presentation of both the analysis of the model problem, and 
the design of a solution is beyond our scope here, we shall summarize the central 
result (25). Within the IP form of the C C D operator, we must modify the 
quadruples term to ensure that no ionic contribution is obtained at dissociation in 
the model 2:2 double bond dissociation problem. For this purpose, it is 
sufficient to eliminate terms in the quadruples which involve a repeated index 

split between different amplitudes (for example the t\2 t[2 terms, as opposed 

to tn t22 terms). This procedure defines a modification of the IP model that 
we term the G V B - R C C model, by analogy with the G V B - R C I approach. 

Whether deleting these terms that prevent correct dissociation in the model 
double bond-breaking also helps to avoid the nonvariational catastrophes that 
occur in C C D and IP is unclear: it must be answered by numerical tests. 
However the answer appears to be affirmative. To illustrate the performance of 
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the 3 models discussed in this section, Figure 4 shows potential curves for the PP 
method, the IP method and the G V B - R C C method for double bond-breaking in 
water relative to CASSCF in the same perfect pairing active space. The results 
are clearly quite encouraging. PP is qualitatively correct, and G V B - R C C 
successfully overcomes the limitations of the IP model to obtain nearly 
quantitative agreement with CASSCF for this problem. Other examples are 
presented elsewhere (25), and also support the likely value of G V B - R C C as a 
very inexpensive approximation to CASSCF. The development of somewhat 
more complete pair approximations than Eq. (10) is underway, and promises to 
still further improve these results. With additional difficulty, it is also possible 
to apply these simplified T2 models to the Q C C D energy functional, which will 
be of considerable interest. 

R(O-H) [Ang] 

Figure 4. Double bond dissociation of the water molecule using the perfect 
pairing (PP), imperfect pairing (IP) and restricted pairing (GVB-RCC) local 

correlation models, compared to full configuration interaction (FCI) and 
Hartree-Fock theory in a minimal (STO-3G) basis. 

How can a reference CCD energy be improved? 

To this stage we have established that the simple C C D wave function is 
capable of yielding good accuracy when applied in a valence space, with an 
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appropriately modified energy functional. However for quantitative accuracy it 
will be essential to also account for the neglected correlation effects associated 
with fluctuations of electrons into orbitals that are not in the valence space. This 
correlation is of the dynamical type. As it involves primarily high energy 
fluctuations, we expect that it should be reasonably well accounted for by 
perturbation theory. Our problem therefore is to develop such a correction given 
a reference solution of the C C D type. Piecuch and co-workers (26-28) have 
recently considered an approach to this problem in which the denominators of 
perturbative corrections are stabilized by a renormalization term. Our approach, 
which we summarize below, has been described in a series of recent papers (29-
31). 

We begin by recalling (32) that the initially solved C C D problem can be 
written as a linear eigenvalue problem with the similarity transformed 

Hamiltonian, Eq. (4), right eigenvector / ^ ° ^ = | θ ) , and left eigenvector 

(^ή0^ | = (θ | 1̂ + A 2 ) . This is true within the space defined by the reference plus 

active double substitutions, which we shall term the primary space, |p). The 

remaining substitutions (singles, inactive doubles, triples, etc) comprise the 

secondary space, |q). Our objective is to perturbatively correct this initial 

solution towards exact solution of the similarity transformed Schrôdinger 

equation, H | R) = E | R), where, formally the exact right eigenfunction would be 

related to the full configuration interaction (FCI) wave function by 

\^FCl) = cxp(f2)\R). 

The similarity-transformed Hamiltonian is partitioned for perturbation 
theory, with the zero order part recovering the C C D solution in the primary 
space, |p): 

^(0)=|p)4(p|+N)4(q| <"> 
^(1)=|p)4<q|+|q)4(p|+k)(^-^) <«l 

\ /qq 
The zero-order Hamiltonian in the secondary space (denoted as D, to suggest 
that it will be diagonal in an appropriate basis) is taken as the one-body part of 
Η , excluding occupied virtual terms (which would couple the ρ and q spaces), 
plus an energy shift, //QQ - Ηω. This shift ensures that diagonal matrix 
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elements of in the q space have the form of intensive excitation 

energies (as needed for size-consistency). Expanding the energy to second order 
yields the following contributions: 

L(o) 

(0) 

_/,(<>) 

R^ = E CCD 

(12) 

Formally, the first order correction to the zero order right eigenvector, 

| j î ( 0 ) ) = |0 ) , is given by: 

(13) 

To proceed further one must evaluate the matrix elements of Η required 
for the first order right eigenvector, Eq. (13), and the second order energy, Eq. 
(12). We shall not do this explicitly here (for details, see ref. (50)), but rather 
just consider the general form of the result. H as defined in Eq. (4) contains 
from one-body to six-body terms (i.e. up to strings of 6 creation and 6 

annihilation operators). Given that | / ? ( 0 ) ^ = | θ ) , this means that the first order 
eigenvector, (13), is a sum of single, double, triple, quadruple, pentuple and 
hextuple substitutions! 

Fortunately, however the pentuples and hextuples cannot couple with 

(ή0^ J = ( θ | ( l + Λ 2 ), as matrix elements Hfg =(^f He^21g^j are zero when 

substitution fis more than 2 levels smaller than substitution g. Thus doubles in 
the zero order left eigenvector (A 2 ) can only couple with up to quadruple 
substitutions. This leaves our second order energy expression as: 

singles 

dep 

doubles 

+ Σ 
deq 

" £ - Σ « 
dep 

triples 

+ Σ 
t 

Σ 4 » 
dep 

quadruples 

Σ 
9 

(14) 

Σ « 
[dtp 

R (0 

To make this expression more tractable, we employ a factorization 
approximation (33) for the energy denominators associated with the quadruple 
substitutions. Otherwise any explicit evaluation of the 0(N*) quadruple 
substitutions cannot require less than 0(1^) computation. In 5 t h order M0ller-
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Plesset theory (34), the quadruple substitutions can be exactly factorized, 
resulting in a significantly lower 0(bfi) computational cost. In our application, 
the factorization is not exact, but the errors introduced appear to be in the 
microHartree range (33). For the explicit spin-orbital equations, see ref. (30). 

The physical significance of the terms in Eq. (14) is as follows. The two 
leading terms (singles and inactive doubles) are roughly analogous to the singles 
and doubles that occur in MP2 theory (the former only when a non-Brillouin 
reference is used). They provide dynamic correlation for electron pairs that are 
primarily unexcited from the reference determinant. Note that the explicit 
presence of Λ 2 in the expressions for singles and doubles contributions 
renormalizes the MP2-like contributions for the effect of other reference 
configurations. The triple substitutions are similar in effect to the MP4 triples 
that occur in CCSD(T) and related theories. They provide dynamical correlation 
for electron pairs in which one electron comes from an excited configuration in 
the reference, while the other does not (thus creating a triple excitation). 
Likewise the quadruple substitutions provide dynamical correlation for unexcited 
electron pairs in doubly excited configurations, when that correlation effect is 
different from the correlation of this pair in the reference configuration (either 
because it involves orbitals outside the active space, or because the amplitude 
itself differs). 

To this stage, the theory we have described is only applicable directly to the 
CCD-based models that use the conventional energy expression, Eq. (3), (with or 
without the use of local correlation approximations). To apply this approach to 
perturbatively correct the QCCD model requires that we modify the second order 
energy to avoid double counting of correlation effects (35). The Q C C D energy, 
(7), contains additional terms relative to C C D that involve quadruple excitations 
in the left-hand wave function. They are in fact very similar to the last term of 
the second-order correction, Eq. (14), when all orbitals involved are active. 
Therefore a simple generalization of the second order correction to QCCD is to 
delete the quadruples terms where all indices are in the active space. In the limit 
where all orbitals are active, there is no quadruples correction, while for smaller 
active spaces, quadruples with indices out of the active space still contribute. 

To explore the performance of the second order corrections without use of 
active spaces, Table 1 shows the performance of OD(2) and QCCD(2) against 
OD, QCCD and FCI for the problem of N 2 dissociation for small bond stretches. 
Considering the result at equilibrium, it is very encouraging that QCCD(2) yields 
a deviation from FCI that is about 1/3 smaller than OD(2). For bond-stretching, 
it is also evident that the superiority of QCCD(2) relative to OD(2) increases. 
Since OD(2) (29) itself is an improvement on a conventional triples correction, 
these results are clearly encouraging for the applicability of QCCD(2) to difficult 
problems. While further studies are clearly necessary to better define the 
performance of QCCD(2), it appears likely that it will be a useful theory 
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particularly for cases where conventional CCSD(T) is poor. For explorations of 
the corresponding CCSD(2) correction, see ref. (31). 

Table L Energy deviationsa,b from FCI (in mH) for N 2 

R (Angstroms) OD OD(2) QCCD QCCD(2) 
1.0679 12.668 1.242 10.626 0.809 
1.1208 14.741 1.499 12.216 0.930 
1.1737 17.104 1.799 13.991 1.055 
1.2700 22.243 2.520 17.744 1.330 
1.4288 33.308 4.491 25.514 2.127 

a FCI calculations from Larsen, H.; Olsen, J.; J0rgensen, P; and Christiansen, O. J. 
Chem. Phys. 2000, 7/5, 6677-6686. 
b Basis set is cc-pVDZ, and no active space is employed for these calculations. 

As an example of the performance of the second order corrections when 
active spaces are employed, Table 2 shows the performance of valence OD, 
OD(2), QCCD, and QCCD(2) relative to FCI for the double dissociation of 
water (again!). The perfect pairing active space is employed. It is evident that 
the (2) corrections are able to reduce the absolute deviations against FCI by a 
factor of approximately 8 at equilibium. As the bonds are stretched this factor 
gradually decreases for QCCD(2) towards about a factor of 4. V O D (and 
therefore VOD(2)), on the other hand, exhibit the nonvariational collapse 
characteristic of conventional coupled cluster methods. These results indicate 
that VQCCD(2) is an effective correction to V Q C C D , although the level of 
agreement with FCI is qualitative rather than quantitative. 

Table Π. Deviations from FCI a (in mH) for water double dissociation5. 

bondlength/Rg VOD VOD(2) VQCCD VQCCD(2) 
1.0 96.550 12.472 96.061 12.466 
1.5 97.788 14.140 96.256 13.986 
2.0 93.740 15.104 96.725 15.757 
2.5 63.907 2.880 98.883 22.000 
3.0 47.645 -8.760 100.933 26.488 

a FCI results from Olsen, J.; J0rgensen, P.; Koch, H.; Balkova, Α.; Bartlett, R J. /. 
Chem. Phys. 1996,104, 8007-8015. 
b Basis set is cc-pVDZ, valence active space is perfect pairing (1:1). 
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Conclusions 

The work described here is a useful extension of the traditional capabilities 
of single reference coupled cluster theories, in our opinion. We have shown that 
tractable approximations to the valence space Schrôdinger equation can be 
obtained in at least two complementary ways. The first approach is by making 
the form of the trial energy "more variational", in the quadratic coupled cluster 
doubles method. The second approach is to eliminate terms in the conventional 
C C D equations that are responsible for its breakdown in bond-breaking 
processes, which leads to the perfect pairing and restricted pairing models. For 
any of these approaches, perturbation theory in terms of the similarity-
transformed Hamiltonian defined by a valence space coupled cluster calculation 
is developed to account for the remaining dynamical correlations. We hope for 
future advances that will improve the present level of qualitative agreement with 
full configuration interaction calculations towards quantitative agreement. 
However, the theories described here are already accurate enough to be useful 
for many purposes, without the need to select the active space size on an ad-hoc 
molecule-by-molecule basis that has plagued traditional multireference methods. 
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Chapter 6 

State-Specific Multireference Coupled Cluster-Based 
Methods for Potential Energy Surfaces and Their 

Approximate Variants 
Sudip Chattopadhyay1, Uttam Sinha Mahapatra1, Pradipta Ghosh1, 

and Debashis Mukherjee2 

1Department of Physical Chemistry, Indian Association for the Cultivation of 
Science, Calcutta 700 032, India 

2Jawaharlal Nehru Centre for Advanced Scientific Research, 
Bangalore 560 064, India 

Traditional multi-reference (MR) coupled-cluster approaches based 
on the effective hamiltonian formalism are often plagued with in
truder states, and are generally unsuitable for potential energy sur
face (PES) studies. We present here a concise account of our recently 
developed state-specific multi-reference coupled-cluster (SS-MRCC) 
theory and its certain approximate variants, which are size-extensive 
and size-consistent and are designed to obviate intruders in a nat
ural manner. The approximations include the state-specific pertur
bative theories (SS-MRPT) and the coupled electron-pair approxi
mation (SS-MRCEPA) versions, which retain the essential physics 
without losing much of the accuracy of the full-blown SS-MRCC. All 
these methods are based on a complete active space (CAS), and the 
target energy is obtained by diagonalizing an effective operator in 
this space. The methods are free of intruders whenever the target 
state energy is well separated from the virtual functions and work 
smoothly over wide range of geometries of various molecular states 
having pronounced MR character and/or those possessing potential 
intruders at various points. For low-lying excited states of molecular 
ground states with varying degrees of quasi-degeneracy, where it may 

© 2002 American Chemical Society 109 
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be difficult to discern a viable intruder-free CAS, a linear response 
theory (LRT) based on the SS-MRCC (MR-CCLRT) for the ground 
state and its approximate variants provide a simple but effective de
scription of the associated PES. We provide illustrative numerical 
applications of the SS-MRCC and SS-MRPT formulations with the 
ground state PES profile of the square-to-rectangular stretch of the 
L14 model system. The excited states of L14 are generated by imple
menting the MR-CCLRT scheme. We demonstrate the efficacy of the 
SS-MRCEPA suite of methods by calculating the ground state PES 
of the trapezoidal H 4 model. The excited states of the same model 
system are obtained via the LRT based on the MR-CEPA scheme 
(MR-CEPALRT). 

Introduction 

The single-reference (SR) coupled-cluster (CC) theory is now well 
established as a powerful tool for incorporating correlation for states 
dominated by a single determinant [1, 2, 3]. The truncation schemes 
such as CCSD [1, 2] and CCSD(T) [4] are now being routinely applied 
to molecules of small and medium sizes. Accuracy of the SRCC at the 
SD or SD(T) truncation levels, however, goes down significantly in 
the presence of quasi-degeneracy, warranting computationally viable 
appropriate extensions of the SRCC method. While inclusion of the 
3- and 4-body cluster operators in the SRCC method (CCSDT [5, 6] 
and CCSDTQ [7]) improves the performance, they are computation
ally very demanding. Any minimal stratagem in such a situation, 
which remains within the framework of the SRCC theory itself, re
quires an accurate treatment of at least a subset of 3- and 4- body 
cluster operators involving the active orbitals involved in the active 
space containing the quasi-degenerate determinants. Such methods 
have appeared in recent years [8, 9]. Although these extensions are 
straightforward, the working equations are rather lengthy. Another 
recent alternative scheme estimates the higher-body cluster ampli
tudes by augmenting the SR-CCSD equations by inclusion of these 
cluster amplitudes from a CAS function [10]. We, however, feel that 
a more natural way to treat quasi-degeneracy is to treat the non
dynamical correlation stemming from quasi-degeneracy by starting 
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from an active space of quasi-degenerate determinants, while the 
remaining dynamical correlations can be included via a cluster ex
pansion of the wave-function involving virtual determinants. This 
approach is thus a multi-reference (MR) generalization of the SRCC 
method. The primary strength of an MR-based method as com
pared to an SR approach is that one gains the flexibility needed to 
describe features such as bond-breaking within a few-body trunca
tion scheme that may require accurate treatment of rather large-
body cluster operators if described within the SRCC method. For 
this reason, there has been considerable efforts to formulate MRCC 
methods for both the ground and excited states for more than two 
decades. Among these developments are the valence universal (VU) 
[11] and state-universal (SU) [12, 13] approaches, which are based on 
effective hamiltonians defined in a model space (MS) chosen to be a 
CAS. The former method is useful for treating differential correla
tion effects as encountered in spectroscopic energy differences, while 
the latter determines state-energies per se. Both these methods have 
been applied with considerable success for quasi-degenerate situa
tions at fixed internuelear separation. There have been other recent 
interesting attempts to develop CC theories based on a single, but 
multi-determinantal reference functions for non-singlet states, using 
the unitary-group adapted spin-free formulations [14]. 

These traditional MRCC theories, despite their success, face seri
ous problems in their use in studying potential energy surfaces (PES). 
All of them are often plagued with the emergence of instability of the 
CC equations stemming from the near degeneracy of some MS func
tions with those of some virtual functions at some geometry or the 
other. This is the notorious problem of intruders [15, 16]. Although 
the intruders can be avoided to a large extent at some specific geome
tries by working with incomplete model space (IMS) [17, 18, 19], the 
situation is far less satisfactory, however, for generating PES since 
different IMS are needed in the different regions over the wide range 
of geometry [20]. One way out of this problem is to develop theories 
based on MR approach but to partition the model space into two sub-
spaces - primary and secondary, where the latter may have energetic 
overlap with the virtual space. The idea is to define a pseudo-wave 
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operator which acts on the entire model space, but generates exact 
states which are equal in number to the dimension of the primary 
model subspace and are dominated by the model functions spanning 
this subspace. This approach was advocated by Kirtman [21], and 
developed fully by Malrieu et al. [22] in the perturbative context, 
who termed this the intermediate hamiltonian approach (IH). There 
have been important innovations by Hoffmann [23], and Khait and 
Hoffmann [24]. The latter method generates the optimal primary 
subspace in an iterative manner, which improves the performance of 
the IH considerably. Coupled-cluster IH formalisms [25], which are 
size-extensive, were also developed. Another approach to circumvent 
the difficulty is to abandon the partitioning of the MS into primary 
and secondary subspace, and define a wave operator which acts on 
just one reference function, which is a linear combination of all the 
functions of the MS. In other words, the emphasis in this approach 
is on developing a theory which targets only one state - rather than 
several states at the same time. This is thus a state-specific approach. 
In this strategy, it is not necessary that the exact function is domi
nated by only certain model functions (which are taken to form the 
primary subspace in the IH methods). There have been two distinct 
courses of development of this approach. In one, the coefficients of 
the model functions forming the initial reference function are fixed by 
a prior diagonalization in the model space, and they are not revised 
as a consequence of mixing with the virtual functions. There have 
been both perturbative [26, 27, 28, 29] and non-perturbative [30, 31] 
formulations, mostly using CAS. Among these, the non-perturbative 
method has been explicitly proven to be size-extensive. In the other, 
the combining coefficients are updated as a result of the inclusion 
of the virtual functions via the wave operator. There have been 
three formalisms [31, 32, 33, 34], based on this idea, one of which is 
our recent state-specific multi-reference coupled-cluster (SS-MRCC) 
formalism [31, 32, 35]. The SS-MRCC method is non-perturbative, 
works in a CAS, is explicitly size-extensive and size-consistent, and 
allows systematic size-extensive approximations by either truncation 
in the rank of the cluster operators or in approximate ways of eval
uating them. The method is intruder-free whenever the target state 
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energy is well-separated from the energies of the virtual functions. 
While this situation is often encountered for the ground state PES, 
even in the regions of avoided crossings, the low-lying excited states 
whose ground states are pronouncedly MR in character, may not dis
play this behavior. An appropriate generalization of the CC based 
linear response theory (LRT), starting from the SS-MRCC, offers a 
simple and viable access to the excited PES in such cases [36]. 

In this article we will focus on some of the latest developments us
ing the SS-MRCC based formulations. In particular, we shall explore 
the efficacy of some physically sensible approximations of the par
ent theory, viz. the second order perturbation theories (SS-MRPT) 
[37] derived from the first order approximations of the cluster op
erators and the non-perturbative schemes in the spirit of coupled 
electron pair approximations (CEPA), SS-MRCEPA, for the PES of 
ground states. We shall also present a brief account of the LRT 
based on the parent SS-MRCC [31, 32] and SS-MRCEPA, termed by 
us as MR-CCLRT and MR-CEPALRT respectively, for studying the 
PES of the low-lying excited states from a knowledge of the multi-
reference ground state PES. The most important advantage of the 
LRT based methods is to naturally circumvent intruder problem in 
the excited states. Moreover, the MR-CCLRT and MR-CEPALRT 
are size-intensive [36, 38, 39] in the sense of providing excitation en
ergies for fragments in the asymptotic limit of separation into non-
interacting fragments. 

State-specific Multi-reference 
Coupled-cluster Theory and its 

Approximate Versions 

We begin this section with a succinct summary of the essential ingre
dients and the theoretical underpinnings leading to the development 
of the SS-MRCC formalism. This will form the starting point for the 
perturbative and the CEPA-like approximations to follow. 
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A natural choice to develop a size-extensive and size-consistent 
correlation theory for states with strong MR character is to work 
with a set of reference determinants spanning a CAS. We write the 
reference function \φο) as a combination of the reference determi
nants \φμ) spanning the CAS: 

ΝΌ> = Σ>μ>Ο μ (1) 
μ 

The exact function \ψ) is written as a cluster expansion involving 
cluster operators Τμ exciting from corresponding |$M)5s: 

\φ)^^βχρ(Τη\φμ)αμ (2) 
μ 

\ψ) is taken to satisfy the Schrôdinger equation with the eigenvalue 
Ε : 

Η\φ) = Η Σ<*Ρ(Τμ)\ΦμΚ = Ε\φ) (3) 
μ 

Each Τμ excites to all the virtual functions from φμ via the various 
η hole - η particle excitations, where the holes and particles are de
fined with respect to each φμ. Such a cluster expansion Ansatz was 
first used by Jeziorski and Monkhorst in the context of the effec
tive hamiltonian based state-universal multi-reference coupled clus
ter (SU-MRCC) theory [12] and has recently been exploited in the 
state-specific formulations too [31, 32, 34]. Since each φμ has dif
ferent sets of active orbitals, any specific core-to-particle excitation 
would lead to a different virtual determinant from each φμ. This is, 
however not so, in general for excitations involving active orbitals. 
Thus, we would encounter redundancy of the cluster operators in
volving active orbitals. To determine all of them, we have to invoke 
suitable sufficiency conditions. One may imagine that sufficiency 
conditions introduce a great degree of arbitrariness in a formalism. 
This is, however, not so if we want to exploit the arbitrariness in 
our choice to satisfy our twin desirable goals: to ensure that intrud
ers are absent and to guarantee size-extensivity. It has been found 
that there are only two choices which naturally lead to MRCC equa
tions which generate manifestly connected cluster operators. One 
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set is precisely the same as the SU-MRCC theory of Jeziorski and 
Monkhorst [12], which is known to encounter intruders. The other 
is our SS-MRCC formalism [31, 32]. We present below, without the 
detailed derivation, the form of the working equations for the cluster 
amplitudes: 

(xi|HM|*M>cM + ] ^ V / , μ (4) 

where 
Η μ = Hexp(T^) (5) 

and 

Ημ„ = (φμ\Ην\φ„) (6) 

The model space coefficients {cM} are determined from 

y^H^Cy = Εομ (7) 

We note that eq (4) involves the coefficients βμ and cv explicitly, 
indicating that the cluster amplitudes depend on them, as is expected 
of a state-specific theory. We also note that the sets {Τμ} and {βμ} 
are coupled through eq (4) and eq (7). Solving these coupled set of 
equation we obtain both the cluster amplitudes and the converged 
coefficients from the diagonalization. The number of unknowns in 
this formalism is exactly the same as in the effective hamiltonian 
based SU-MRCC theory [12]. 

The detailed derivation and the proof of the extensivity of the 
SS-MRCC theory have been discussed at length in our recent papers 
[31, 32]. What is pertinent for us here is the identification of one 
of the essential arguments leading to extensivity, since this will form 
the guideline of the approximations to be discussed below. Dividing 
eq (4) through by cM, we have 

foil* μ|*μ) + Σ<Χΐ\ exp(-T^) ^ΜΤν)\Φμ)ΗμΛ^Ιθμ) 
u 

= 0 y l, μ (8) 

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
00

6

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



116 

The first term of eq (8) above is manifestly extensive, while the 
connectivity property of the second term requires a careful treatment, 
since this involves a product of two matrix-elements and may not 
have terms with common orbital labels in the two factors. Using the 
Baker-Campbell-Hausdorff formula for the product of exponentials, 
the second term can be written as 

J2(XI\exp(-T") βχ^τηΐφ^Η^/βμ) = 

YJOCI\{TV-T» + \\T\T»\ 

+4 [ [ T " > Γ ^ τ μ ι - è [ [ τ " ' τ μ ] ' η 

+ -·)\φμ)Ημν{οι/ΐ€μ) (9) 

Now, the second factor in eq (9), Ημ^ο^/βμ) is labeled by all the ac
tive orbitals which distinguish the determinants φμ and φ^ and the 
first factor (χ^Τ" — Τμ + \[TV,Τμ) + ^ [ [ Γ " , Τ μ ) % Τ μ ] - ^ [ [ Τ " , Τ μ ] , 
Tu] Λ )\Φμ) should contain terms with some of these distinguishing 
active orbitals in Εμι/{μνΙθμ) for extensivity. While it is straight
forward to show that the commutators and the multiple commuta
tors generated by the Baker-Campbell-Hausdorff formula do have 
active orbital labels with this property, the individual terms linear 
in Τμ and Tu do not. In fact there are excitation operators in
volving orbitals different from those active orbitals distinguishing φμ 

and φν. Interestingly enough, it has been proved [31, 32] that the 
term {xi\{Tu - Τμ)\φμ) containing the difference (Tu - Τμ) is, how
ever, labeled by some or all the active orbitals distinguishing φμ and 
φν, and thus the two factors in the term in eq (9) above have in
deed some orbital labels in common. For any approximation of the 
SS-MRCC equations preserving the extensivity, it is mandatory to 
treat all the cluster amplitudes on an equal footing; otherwise the 
difference (Tv — Τμ) will not be labeled by the active orbitals distin
guishing φμ and φν. This aspect would be one guiding principle in 
our development of the perturbative and CEPA approximations. 

We now present a brief critique of the other two SS formalisms 
[33, 34] which bear kinship with the SSMR formulation being dis-
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cussed above. Malrieu and his group developed non-perturbative SS 
theories based on the same Ansatz, using a dressed-CI approach [33]. 
They eliminated the redundancy of their working equation in favor 
of some fractional parentage coefficients, and suggested expressions 
for determining them. The method is size-consistent with respect to 
fragment separations using localized orbitals. The SS-MRCC the
ory, however, is invariant with respect to rotations with the active 
and virtual orbitals separately, and thus is size-consistent in either 
localized or delocalized orbitals. A SS Brillouin-Wigner approach, 
proposed very recently by Hubac and co-workers [34], is also related 
to ours. Although their method has a much simpler structure com
pared to the more elaborate expression of our SS-MRCC theory, it is 
plagued by size-extensivity and size-consistency errors in energy in 
the limit of separation. 

We now focus on the development of a suite of quasi-linearized 
approximations of the SS-MRCC theory, viz. SS-MRPT and SS-
MRCEPA. We would deal with the perturbative formulations first, 
and development of the SS-MRCEPA methods next. 

State-specific multi-reference perturbation theories: 
SS-MRPT 

We rewrite our SS-MRCC eq (4) in the following quasi-linearized 
form to obtain the cluster amplitude finding equations: 

[{χΐ\Η\φμ)+Σ{(χι\Η\χη) - (φμ\Ημ\φμ)δΐ7η)(Χ7η\Τμ\φ^ 
m 

+ • • + Σ(χΐ\(Τν -Τμ + ·· ·)\φμ)ΗμνΟν = [(χι\Η\φμ) 
ν 

+ \Xm) ~ (ΦμίΗμΙφ^δΐ^χ^ΐφμ) + • • ·}βμ + 
τη 

Σ(ΧΙ\(Τ" + • • -^Ημναν - Ε(Χι\Τ»\φμ)θμ = 0 V I, μ (10) 

To develop the state-specific perturbation theories, we first partition 
our hamiltonian, H, into an unperturbed part, i ïo, and a perturba-
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tion, F , and use the above equation to systematically generate the 
proper Rayleigh-Schrôdinger (RS) and Brillouin-Wigner (BW) ver
sions of the perturbative expansion. While the RS version uses Ε as 
a power series expansion, in the BW the Ε is kept unexpanded. We 
expand each cluster operator Τμ that appear in the above equation as 
a power series in V. The terms (φΜ\Ημ\φμ) in eq (10) are expanded 
as power series in the RS theory, while we leave them unexpanded 
in the BW version. 

The formal expressions for the RS- or BW-based SS-MRPT of 
order η are obtained by expanding the cluster operator ΤΜ in power 
series, followed by collecting all terms of order n. In particular, 
the cluster amplitudes at the first order for the RS expansion are 
obtained from 

[(χΐ\Η\φμ) + 5^((χΐ|Η0μ|Χη»> - (Φμ\Η0μ\φμ)δ1πι) 
m 

(χτη\Τ^\φμ)}ομ + ^ ( χ ι ΐ Γ ^ Ι ^ Η ο ^ 

-Ε0(χι\Τ^\φμ)ομ = 0 y I, μ (11) 

The corresponding B W version takes the following form: 

[(χι\Η\φμ) + Y^((xi\Hop\xm) - {Φμ\Ημ\φμ)61ιη) 
m 

(Χπι\Τ^\φμ)}ομ + Σ{χι\Τν^\φμ)Ημνον 

-Ε(Χι\Τ^\φμ)ομ = 0 VI, μ (12) 

One of the most crucial features of our perturbation theories lie in the 
coupling of various Τμ operators for different /x's through the term 
ΣΜΙ\(τΗ1) -Τμ{ι))\ΦΜ)Η0ΜΙ/^ where Η0ΜΙ/ is the zeroth order ma
trix. The coupling essentially originates from the off-diagonal terms 
^Ομι/̂ ί/ with μφν, and is of paramount importance for our purpose, 
as this ensures size-extensivity of our perturbative formalisms. There 
are two interrelated issues here: (a) we need an efficient partitioning 
of Η into HQ and V, such that a good amount of coupling via Η Μ Ι / is 
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incorporated and (b) the treatment of Τμ^ and in the coupling 
term (χι\(Τ^ - Τμ^)\φμ) should be on equal footing. 

For the point (a), at least the portion of the two-body terms 
in ifo which can couple the φμ$ which are at least doubly excited 
with respect to one another, since a substantial portion of the non
dynamical correlation effects emerge from the off-diagonal coupling 
between determinants which are at least doubly excited with respect 
to one another. Use of two-body terms in Ho has previously been 
considered by others as well [40, 41]. Thus, our Ho consists of all 
the two-body terms that scatter electrons from all pairs of active 
orbitals, same or different. Hence to have our HQ precisely defined, 
we rewrite Η in normal order with respect to the core as the vacuum: 

H = Ec + Ç i i l / c l i X a î a ^ c + \ ^(ij\kl){ala}aiak}c (13) 
ij ijkl 

in which the labels i, j , etc. span the one particle basis and Ec is the 
core energy, the expectation value, (0|ίί |0) , is with respect to the 
core function, |0), and fc is the core Fock-like one-body operator. 
Invoking a multi-partitioning of the hamiltonian, and taking each 
model function φμ, on which the perturbation acts, as the vacuum, 
we obtain, 

ΗΜ =< Η >Μ+Σ(ϊ\Ϊμ\3){α\αό}μ + ^^(υ\Μ){4α]αια]ζ}μ (14) 
ij ijkl 

where 
< Η >μ= Ec + - Y] ((uv\uv) - (uv\vu)) (15) 

and 
fnj = fdj + ] P ({iu\ju) - (iu\uj)) (16) 

ν>€φμ 

where / μ is the Fock operator with respect to φμ. 

We advocate a particular choice of HQ which is akin to the Epstein-
Nesbet (EN) partitioning for all the determinants which have at least 
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one inactive orbital, but it differs from EN in that Ηομ„, which hap
pens to coincide with just the matrix-element Ημν. We define our 
Ho as a sum of (H)M, the diagonal part of the Fock operator, / μ , 
with respect to φμ as vacuum, when there is at least one inactive 
orbital, the whole active block of / M , plus all the ladder operators 
of the two-body term in eq (14) which contains at least one inactive 
orbital and the entire active portion of the two-body term. Though 
this resembles the choice of Dyall [40] in the context of CASPT2, but 
is appropriately generalized in the context of multi-partitioning. 

For the point (b), let us recall at this point the observation noted 
earlier (after eq (9)) that the term (xi\(Tu - Τ ^ ) | < £ μ ) # μ ι / ( ^ / ^ ) is 
connected provided T " and Τμ are treated on the same footing. This 
aspect would have a direct bearing on the structure of the RS and BW 
form of the working equations, bearing in mind that size-extensivity 
has to be rigorously maintained. 

We note carefully that we want the unperturbed energy Eo to 
appear in the denominator in the RS version. To achieve this, we 
approximate Ημν by Ημν in ̂ (XI\(tuW ~ Τμ{;ι))\φμ)Ημι/ον, since 
this leads to : 

-Ε0(χι\Τ^\φμ)ομ (17) 

Thus we note that the term containing (χι\Τν^\φμ) should appear 
multiplied by Ημνον in the RS version. 

Similarly, for the BW theory, the perturbed energy E^ should 
appear in the denominator of the working equation. This will follow 
if we would approximate Ημν by its second order counterpart HJ$. 
The corresponding coupling term then takes the form: 

Υ^{Χι\{Τ^) -Τ^)\φμ)Ημναν = f̂air*1 ,̂,)*®*, 
-Ε®{Χι\Τ^\φμ)ομ (18) 

This implies that the term containing (χιΙ^^^Ι^μ) should appear 
multiplied by H$cv for the BW version. 
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Thus our working equation for Τμ^ in the RS expansion may be 
written as 

tKD =
 Η ΐ μ + Σ ^ Μ ( Χ / | Γ Κ 1 ) 1 ^ ) ^ ( ^ / ^ ) + Timbra Hlmtf1] 

Μ EQ-HU 
(19) 

where ( χ / | Γ μ ^ | ^ μ ) is abbreviated as ί |Ρλ The prime in the sum 
above restricts the sum to %m's differing from χι only in the active 
orbitals. This is a consequence of our choice of Ho- Eo and cM's (ze-
roth order) are obtained by diagonalizing the matrix of Εμν (matrix 
of hamiltonian in the model space). 

The corresponding BW expression is given by 

*μ Ε- Hu 

(20) 
It is straightforward to discern that the energy denominators 

[Eo - Hu] and [E - Ha] in the RS and the BW versions respec
tively are robust as long as the unperturbed or the perturbed energy 
is well-separated from the energies of the virtual functions. Both the 
perturbation theories are thus intruder-free, and both are explicitly 
size-extensive. They are also size-consistent when we use orbitals 
localized on the separated fragments. 

The pseudo-effective operator H$ up to second order in both 
cases is given by 

ι 

if(2) on diagonalization provides us the respective second order en
ergy E^: 

Σ,Η^Ρ^^ψ (22) 
Eqs (19-22) are our final working expressions for the evaluation of 
cluster operators and energy in the perturbative framework. It is 
noteworthy that in the SS-MRPT(RS) formalism the zeroth order 
coefficients, ĉ 's are used to evaluate the cluster operators in eq (19), 
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but the coefficients are relaxed during the computation of E ^ 2 \ since 
this is obtained by diagonalization via eq (21). On the other hand, 
in the BW context, the coefficients are iteratively updated. It is 
pertinent to mention that in our applications in this article the term 
ΊΙ'πι,ΐφπι Hirnt™^ is zero by symmetry. For more details, we refer to 
our earlier papers [37]. 

State-specific multi-reference CEPA-like formalisms: 
SS-MRCEPA 

Starting with the parent SS-MRCC equations, we can derive CEPA-
like approximations leading to the SS-MRCEPA methods by impos
ing a set of approximations. 

We recall the approximation that leads to the single-reference 
CEPA (SR-CEPA) [42]. CEPA(O) emerges when the SRCC equations 
are totally linearized, and the virtual space is restricted to functions 
reached via the hamiltonian. In the same spirit, we can generate 
the analogous SS-MRCEPA(O), if we linearize our SS-MRCC equa
tions and retain only the one- and the two-body cluster operators in 
{Τμ}. In the SR-CEPA(2), the diagonal exclusion principle violat
ing (EPV) terms are additionally retained, and we propose a similar 
scheme, SS-MRCEPA(2), where analogous terms in Η are retained 
in the SS-MRCC theory. 

Thus, in SS-MRCEPA(0), we approximate the Ημ originating 
from SS-MRCC theory as follows: 

Ημ^Ημ+Η^ΤΪΞΞΗμ (23) 

Using this approximation, the model space equation becomes 

^{φμίΗΐΐφν)^ = Εαμ (24) 
ν 

and the corresponding cluster finding equations take the form 

{χΐ^μ\Φμ)ομ^Υ^Χΐ\{Τν'-Τη\φμ)Ημναν = Ο Υ μ , Ζ (25) 
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or, equivalently, 

{χΐ\Ημ\φμ)ομ + J^Wttu)11^» = Μχΐ\Τμ\Φμ)ομ (26) 

where EQ is the zeroth order energy, and ĉ 's are the zeroth order 
coefficients, obtained by diagonalizing the zeroth order matrix Ημν. 
Eqs. (24) and (26) are our working equations for the SS-MRCEPA(O) 
theory. Let us note here that the structure of the SS-MRCEPA (0) 
equations bear close resemblance with our SS-MRPT(RS). The pres
ence of EQ and βμ1 rather than Ε and cM respectively, underlines this 
kinship. 

To derive the SS-MRCEPA(2), we selectively consider the diago
nal EPV terms. This implies that we retain terms of the type: powers 
of Τιμ acting on φμ where Τχμ excites to a χι from φμ. Thus, this 
could be termed as a quasi-linearized version of SS-MRCC theory. 
This approximation closely resembles Meyer's single-reference based 
CEPA(2) method [42]. The Έμ in this method is taken as 

Ημ = Ημ + Η^ΓΪ + i ( ( ^ T M ) T ^ ) d i a g = Έ"μ (27) 

Then, the energy and cluster amplitude finding equations are as fol
lows: 

ν 

{χΐ\Η"μ\φμ)ομ + Σ{Χι\{Τν - τη\φμ)Η'^ον = 0 V μ, I (29) 
V 

Using eq (28) we get, 

<Χΐ ί*>μ>ο μ + Σ > ι | Γ · > „ > £ > „ = Ε(Χι\Τ»\φμ)ομ (30) 

where 

(Φμ\Η"ν\φν) = Η" 
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Eqs. (28) and (30) are the required equations for SS-MRCEPA(2). 
Structurally the SS-MRCEPA(2) closely resembles the SS-MRPT(BW), 
since E, rather EQ} appears in eq (30). Our SS-MRCEPA(2) theory 
can also be cast as an eigen-problem form of certain kind of dressed 
multi-reference configuration interaction (MRCI) equation. 

where βι

μ = t̂ ĉ , with ΐι

μ, the amplitude of Τ\μ and (χι\Ημ\χγη) in
dicates the quantity to be connected. Eq (31) indicates that the 
SS-MRCEPA(2) equations may be viewed as extensivity corrected 
MRCI equations. 

Just as in SS-MRPT(RS)5 a typical feature in our SS-MRCEPA(O) 
formalism is the use of the zeroth-order coefficients c^ to compute 
the cluster operators and Η, but allow the coefficients to relax while 
computing energy, since this is obtained by diagonalization. For 
the SS-MRCEPA(2) case, however, the coefficients also get updated 
iteratively. 

The main advantage of approximating the SS-MRCC theory in the 
SS-MRCEPA form lies in the fact that we save a lot of computing 
time since we neglect a host of nonlinear terms. They would thus be 
very attractive approximate schemes if there is no significant loss of 
accuracy in the computed energy. The theories are explicitly size-
extensive, size-consistent and are also intruder free. 

μ μτη 

(31) 

For completeness, we want to quote here the earlier MR-based 
CEPA-like formulations which appeared in the literature [43]. 
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Theories of Excited State PES via Linear 
Response Approach 

As discussed earlier, one of the important thrusts in this article is the 
development and study of linear response theories based on the SS-
MRCC method and its CEPA-like approximations. For the excited 
states whose ground states are multi-reference in nature, this is a 
very convenient and compact approach. 

Linear Response Theory Based on the State-specific 
Multi-reference CC Formalism: MR-CCLRT 

In the CC based linear response theory, the excited functions are 
written in terms of the ground state function via the action of a 
suitable excitation operator. In the spirit of the single-reference 
coupled-cluster based linear response theory (SR-CCLRT) [38, 44, 
45] (or SAC-CI [46]) we posit on our excited state, |^*), the follow
ing Ansatz: 

\1>k) = ^ e x p C r ^ l ^ (32) 
β 

\ipk) satisfies the Schrôdinger equation 

H\4>k) = Ek\tl>k) (33) 

In close analogy with the SR-CCLRT, we include in each excitation 
operator 5^ all the virtual excitations from |0μ), and retain the clus
ter components Τμ of the multi-reference ground state (eq (2)) in 
our Ansatz for \il>k}- In addition, we also want to change the relative 
weights of the various |<£M)'s in the function With this choice, 
we can represent S% as 

S£ = *fl + SZ with 5£ = Σ ^ Υ ^ (34) 

m 
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where Y™^ creates a virtual function \xm) from \φμ). It is evident 
that there are several 5jjf's which excite to the same \xm) from several 
\φμ)'Β. Thus, we have to invoke a set of sufficiency conditions to 
determine them. We have 

Σ[^ν(Τμ)\Φν){ΦΛΗΛ\Φμ) + βχρ(Τμ)3μ\φν){φν\Ημ\φμ) 
μν 

+ βΧρ(Τη8μ°\φι,){φ„\Ημ\φμ) + Σ^ΡίΤηΟΗμΊξίφμ) 
μ 

+ βχρ(τη8^Ημ\φμ) + expiT^QH^}}^ 

= Ε*Σ*ΜΤμ)8£\φμ)ομ (35) 
μ 

Following the same manipulations leading to the SS-MRCC equa
tions [31, 32] we interchange the labels μ and u in the above equa
tion in the first three terms and equate terms with same μ. For each 
virtual space projection onto (xi|exp(—Τμ) we have 

< X * | f^Çi^>c M + (χι\8%ΟΗμ\φμ)ομ + (χι\Ημ\φμ)3μ0βμ 

+ £ θ α | « ρ ( - Γ " ) βχρ(τη3ζ\φμ)(φμ\Ην\φ1/)οι/ 

u 

+(xi\exp(-T") ΒΧ?(τη\φμ)(φμ\Ψ^\φν)ο1/ 

+ (xi\exp(-ï^) expiTn^^H^s^Cv 
= ΕΗ{χΐΗ\Φμ)ομ (36) 

The sufficiency conditions imply that each virtual function (χι\ can 
be reached from several φμβ and the projection for each (χι\ has to 
be done for each \φμ). Also, each ket |%m) appears with a different 
coefficient, depending on how it is generated via various S^s acting 
on the associated \φμ)^. To keep this information as a mnemonic, 
we would from now on denote a {χι\ as (χι

μ\ if it is used for projection 
from the eq (36) for a certain \φμ) and a functions \xm) as |χ™) if it 
is obtained by Y™^ acting on \φμ) From now on, we shall introduce 
the coefficients d^s and d^s defined by 

dfj.k = sk ομ 
(37) 
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d7k = sJTfccJ« ( 3 8) 
Using the above equations, we can rewrite eq (36) with the notation 
ΙΧμ ) for \xm) reached from \φμ): 

{χ1

μ\Ημ\Φμ)άμπ + Σ & Μ Κ ^ Ι * ^ 
m 

m 

+ Σ(Χμ\*Μ~Τμ) Βχρ(Τ»)Υ^\φμ) (φμ\Ην\φν)φπ 
νπι 

+ Σ<χ!,| βχρ( -Γ^) ^{Τν)\φμ){φμ\Ην\Φν)ά^ 
V 

= Eud1^ (39) 

The third term in eq (39) involves ($Ημ acting on \φμ), which implies 
that ζ}Ημ\φμ) is an excited function (henceforth denoted by [EFM]ex). 

In the same manner we project eq (35) onto the active space 
manifold {0A|exp (-Τμ) and get 

Σ(Φ\ΪΗν8$\φν)υν + Σ ( * λ | ^ | ^ > * £ ° ^ = Ekcxsf (40) 

ν V 

which on simplification generates, 

YJ&\W^\*v)*X + Υ^(Φχ\ΗΜά^ = Ekdxk (41) 
um ν 

Thus, the use of the sufficiency conditions in the linear response 
equations based on SS-MRCC theory leads naturally to a set of eigen
value equations. Thus, once the cluster amplitudes of Τμ for all μ'β 
have been found out by solving the SS-MRCC equations, we can 
get the associated excited state energies relative to the state \φ) by 
solving the MR-CCLRT equations. An attractive feature of our MR-
CCLRT is that the computed excitation energies are size-intensive 
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[38, 39] in the sense that they become asymptotically equal to the 
sum of the fragment excitation energies in the limit of non-interacting 
fragments. 

Linear Response Theories Based on the State-specific 
Multi-reference CEPA Formalisms: MR-CEPALRT 

We will now develop the corresponding MR-CEPALRT using exactly 
the same approximations on MR-CCLRT as has been used in the SS-
MRCC theory to arrive at the SS-MRCEPA theories. To derive the 
working equations for the SS-MRCEPA based response theories, we 
start with the parent MR-CCLRT equations (39) and (41) for the 
excited states and make approximations akin to what have been used 
to arrive at the SS-MRCEPA(O) and SS-MRCEPA(2) theories from 
the SS-MRCC theory for the ground state. Both the MR-CEPALRT 
schemes can be subsumed in the same type of working equations, 
with appropriate definitions of certain dressed operators. 

Since in CEPA-like methods, we ignore multiple excitations out 
of the model functions leading to χι

μ and linearize the terms in 
[βχρ(-Τ^) exp(T")], the working equations of the virtual space pro
jections of the CEPA-based MR-CCLRT eq (39) for both the CEPA-
based schemes can be simplified as follows 

τη τη 

+<Χμ\Πμ\Φμ)άιΛ + Σ & ί , Κ Τ " - ΤηΥ^\φμ)Η'μνά% 
um 

+ Σ > ί κ τ , ' - τη\φμ)(φμ\ΨΰΫ^\φν)ά^ 
um 

+ ^ U ( T V - Τμ)\Φμ)Π'μ»ά* = (42) 
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The corresponding model space equation 

J2(<t>*\HvY^\4>u)d™k + Υ^φχ^ΜΜ^ = Ekdxk (43) 
um u 

In the above working equations of the MR-CEPALRT, some ap
propriate approximant to the operator Ημ figures, whose actual 
form depends on whether we are considering SS-MRCEPA(O) or SS-
MRCEPA (2). We shall give the explicit forms in the article later (in 
eqs (51) and (53)). Similarly, the dressed operators Η μ and Ημ are 
defined later through the eqs (51) and (53). 

The above MR-CEPALRT equations can be cast as a set of eigen
value equations of the general form: 

Σ(Φμ\Ή\φν)ά* + Σ(φμ\Η\χ?)φΗ = Ε ^ Μ Η (44) 
u um 

Y^ixUW^duk + Y,{x»\H\X™)d™k = ΕΗά1^ (45) 
u um 

In the matrix notation the above two equations can be represented 
as 

/ Ημν Ημπι \ / \ / dMfc \ 

V Hi™ A C / k V dU J 

The parent MR-CCLRT [36] also can be cast in exactly the same 
form, though in this article we have not shown the details. The 
elements of the operator Η are given by 

(Φμ\Η\φν) = {φμ\Ην\Φν) (46) 

(Φμ\Η\χ?) = (Φμ\ΗνΥ^\φν) (47) 

{χ1

μ\Ή.\Φ») = {χ1

μ\Ην\Φ»)δμν + {χ1

μ\{Τν - Τμ)\φμ)Η'μν (48) 
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(χι

μ\η\χ™) = (χι

μ\(τ»-τμ)γ^\φμ)Η\ 

+{χ1

μ\ΥΤΨ^χ\Φν)δμν + bilHvY^fru)*. 

+(χ

ι

μ\(τ^ - τη\Φμ)(φμ\Η%γ«*\φν) (49) 

For SS-MRCEPA (0) based response equations 

Ημ + ΗμΤ» 
{Φμ\Ην\φ„) 

(50) 

(51) 

However, for the SS-MRCEPA(2) based response equations 

Thus, once the cluster amplitudes of Τμ for all μ'β have been found 
out by solving the SS-MRCEPA equations, we can get the associated 
excited state energies relative to the state |̂ ) by solving the MR-
CEPALRT equations by constructing the matrix of Η via eqs. (44-
49). 

It is evident that if one drops the excitation operator, Y™"* from 
the working equations of MR-CEPALRT they naturally reduce to 
the corresponding ground state CEPA theories, SS-MRCEPA. This 
implies that SS-MRCEPA are the completely unperturbed versions 
of MR-CEPALRT, which is why we coin the term, MR-CEPALRT, 
for the linear response theory based on the SS-MRCEPA method. 
We not only get the excited state energies but also the ground state 
energy by solving the MR-CEPALRT equations. 

We conclude the section with the comment that, just as in the full
blown MR-CCLRT [36], one can prove in the same manner that the 
underlying operators in the eigenvalue problem of MR-CEPALRT 
are connected and the possible excitation energies also satisfy the 
size-intensivity criteria [38, 39]. 

(Φμ\Ην\φν) 

Hv (52) 

with Ημ Ημ + ΗμΤμ + ^{{ΗμΤ^Τν)^ (53) 
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Numerical Implementations 

Algorithmic considerations 

In all of our applications, the Τμ amplitudes are confined to single 
and double excitations with respect to each φμ. We note that there 
are coupling between various cluster operators Τμ in the SS-MRCC 
and the SS-MRCEPA equations. But these are not too numerous: 
only those components of T„s with ν φ μ can couple which can cause 
excitations to χι by their action on φμ. The couplings are even less 
in the SS-MRPT methods. The coupling effects can be included in 
an iterative manner. We start a loop for μ. The cluster finding equa
tions are then solved for Τμ by using the previously computed values 
for other TV's {ν φ μ). For SS-MRPT(RS) and SS-MRCEPA(0) the
ories, the values of the energy Eo can be obtained by diagonalizing 
the matrix of Ημι/. Only after the convergence of cluster amplitudes 
and the coefficients ομ are reached we get the energy, using the cor
responding energy finding equations. It is important to emphasize 
here once more that the computation of the cluster operators in the 
SS-MRPT(RS) and the SS-MRCEPA(O) method hinges upon the use 
of the zeroth-order coefficients, ĉ . For the rest of the methods, the 
coefficients have to be iteratively updated. We have found that a fast 
convergence is reached by converging the cluster amplitudes first in 
an inner loop while keeping the coefficients and Ε fixed, and update 
Ε and the coefficients in an outer loop after the convergence of the 
cluster amplitudes in the current inner loop is reached. 

For the MR-CCLRT and MR-CEPALRT, we restrict ourselves 
in our applications to only a singles-doubles approximation for the 
excitation operators {5^}: 

St = S^ + S^k (54) 

First the ground state problem is solved using the ground state 
SS-MR methods, and the sets {cM}, {Τμ} are obtained along with the 
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ground state energy E. The nonhermitian transformed hamiltonians 
Ημ are constructed once we get the set of cluster operators {Τμ}. 
In the singles-doubles truncation scheme, we need to compute up to 
three-body components of the transformed hamiltonians Ημ. The 
three-body matrix elements have been found to be very important 
for the calculation of accurate excited state energies. All the two-
body matrix elements are stored in the memory, and the three-body 
elements are generated on the fly as needed. 

We emphasize here that, the equations of our SSMR-based LRT 
are defined in a space of overcomplete basis: each virtual function 
\Xm) appears several times-generated from various |0i/)'s, with atten
dant coefficients d™k. If the number of linearly independent functions 
in the Hubert space is N, then only Ν roots are meaningful. The 
rest of the roots are extraneous. They can be identified in a rather 
straightforward manner by looking at the norm of the full eigenvec
tor for each eigenvalue. The spurious roots show abnormally small 
values of the associated norms. In all our applications, we could 
discard the spurious roots unambiguously in a routine manner. For 
details we refer to our recent article [36]. 

Results and Discussion 

We present now a few illustrative applications, with special atten
tion to difficult situations where degeneracy tends to occur in vary
ing degrees between the various model determinants and also when 
they are plagued by intruders at various geometries. We provide 
first the results obtained with the parent SS-MRCC method, and 
its perturbative variants, by studying the ground state PES of a 
rectangular L14 model system. Both the SS-MRPT(RS) and the SS-
MRPT(BW) results are shown. The second order results obtained 
with the quasi-degenerate perturbation theory (MC-QDPT(2)) [47] 
are also shown along with our perturbative results for comparison. 
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The MC-QDPT(2) theory starts with fixed coefficients for the model 
space functions, unlike in our SS-MRPT theories. It is also not fully 
extensive. We also present the second order SR-MBPT and the ef
fective hamiltonian based MR-MBPT results, since we want to in
vestigate to what extent the SR-MBPT results behave poorly at the 
quasi-degenerate regions, and the MR-MBPT results sense the pres
ence of intruders. HQ in both SR-MBPT and MR-MBPT is taken as 
in the standard EN partitioning, which is structurally closer to our 
choice for HQ in the two SS-MRPT methods. 

We also display the PES of some of the low-lying states of this 
system using our MR-CCLRT. The pair of our newly proposed SS-
MRCEPA methods are applied to the trapezoidal H4 model system 
[48] to study its ground state. For the same model, we also generate 
the excited state PES, through our MR-CEPALRT. The performance 
of the methods discussed in this article is compared with the corre
sponding full CI (FCI) results. 

All the systems chosen above are described well in the reference 
level by two-determinantal model spaces for the ground states, de
scribed generically by the functions φι = [core]a2 and Φ2 = [core]62. 
The two active orbitals a and b belong to two different symmetries. 
This ensures the completeness of the model space. Since the refer
ence determinants used in the applications in the present work are 
closed-shell singlets, the spin-adaptation of the working equations is 
a very simple task in this case. 

We employ the Hartree-Fock (HF) orbitals of one of the refer
ence determinants from φ\ and Φ2 to generate the orbitals in our 
calculations. Since our state-specific formulations treat both the de
terminants democratically, we could have opted for any of the two 
determinants to generate the orbitals. However, once a decision re
garding the determinant is made, we keep this fixed throughout the 
PES, even if at some geometries it might not be the dominant de
terminant. The electronic structure programme package GAMESS 
is used to generate the required molecular integrals and FCI results. 
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L i 4 Model: Rectangular Geometry 

We introduce here the L14 model, where we start from a square ge
ometry of four Li atoms, and study the PES of its various states 
generated by a gradual elongation of the perfectly square form to 
a rectangular geometry (see Figure 1). This simulates interactions 
between two L12 molecules at certain specific geometries. The L i -
Li distance in each L12 molecule is kept fixed at the stretched bond 
length (r ) of 7.578 a.u. (approximately 1.5 times of ground state equi
librium distance of L12) to enhance the effect of quasi-degeneracy. 
The lowest energy determinant corresponds to the function φι = 
la^lbilb^lafôafeb^ in the C2V point group and this becomes quasi-
degenerate with Φ2 = lallbilbllafaafebi at i î=7.578 a.u. These 
functions, φι and Φ2, form the model space for this system. There is 
a gradual fading off of the quasi-degeneracy as R is increased. Po
tential intruders are encountered within the region of i?=10.04 to 
Λ=10.8 a.u. This behavior is different from the analogous rectan
gular H4 (the so-called P4) model [48] at the geometries studied so 
far. We depict this situation by a plot of the CSF energies of L14 
as a function of R in Figure 2. We employ the DZP [2s lp] ANO 
basis [49] for our calculation. In our applications in this article, the 
Li core orbital is kept frozen. The function φι is chosen as the one 
whose HF orbitals are employed in our calculations. 

Figure 3 displays the deviation of the ground state energies com
puted using our SSMR methods with respect to FCI values. It is ob
served from Figure 3 that the performance of the SS-MRCC method 
is excellent. The corresponding SS-MRPT methods are good as well, 
and are more accurate than the MC-QDPT(2) [47] results, with the 
same model space. As is expected, the SR-MBPT results are quite 
inferior as compared to our SS methods around the quasi-degenerate 
region. The performance of the effective hamiltonian based MR-
MBPT method is very poor, sensing intruders right at the begin
ning. This feature clearly indicates that this model system warrants 
a truly MR description but a state-specific treatment. 

The performance of the MR-CCLRT for the low-lying PES of L14 
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Ο ο 
R 

Figure 1. Geometrical arrangement of four L i atoms 
in rectangular L i 4 . 
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Figure 2. P lot of C S F energies of the rectangular L14 
model . 
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-0.04 H 

-0.06 -I 1 1 1 1 1 1 1 1 1 1 1 
8 9 10 11 12 13 

R (a.u.) 

Figure 3. Difference energy plot of the ground state 
of the rectangular L14 model with respect 
to F C I . 
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model is presented in Figures 4 - 7 , along with the corresponding 
SR-CCLRT and FCI values. From the figures it is evident that the 
MR-CCLRT provides more or less uniform description of the PES 
of the low-lying states of L14. The corresponding SR-CCLRT results 
are vastly inferior for all the excited states shown in the figures. 

H 4 m o d e l : T r a p e z o i d a l geometry 

The trapezoidal H4 model (so called H4) system, originally intro
duced by Jankowski and Paldus [48] and later studied in detail by a 
host of workers [32, 50] serves as an excellent benchmark for judging 
the performance of any multi-reference formulation. For the present 
we choose the trapezoidal H4, the so called H 4 model, as our working 
system and employ the DZP basis [51] for all the calculations per
formed. In its ground state, H 4 shows remarkable degree of multi-
reference character coupled with the presence of intruders. The de
gree of quasi-degeneracy of the model functions can be effectively 
tuned by the opening angle leading to the trapezoidal form. The H 4 
model could be conceived of as having two H2 molecules with fixed 
bond length of 2.0 a.u. and they are kept in an isosceles trapezoidal 
position with the shorter end-to-end distance fixed at 2.0 a.u. We 
start out with a geometry wherein the two H2 molecules are placed 
parallel to each other, thus constituting a square conformation and 
corresponding to the situation of maximum degeneracy. This is then 
continuously deformed by symmetrically widening the angle so that 
the two H2 molecules make progressively obtuse angles with the line 
joining the two fixed end points 2.0 a.u. apart. Each of the functions 
thus generated correspond uniquely to an angle 0, which is the differ
ence between the actual obtuse angle and π/2. We specify the func
tions by the parameter φ = απ [51]. Changing a from 0 to 0.5, we go 
from the square configuration to the linear one, which corresponds to 
a continuous variation of the degree of quasi-degeneracy among the 
ground state determinants φι — \a\lb\ and Φ2 = la22af. φι and Φ2 
are equally important at a = 0 (corresponding to the square geom
etry) and are practically non-degenerate at a = 0.5 (corresponding 
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Figure 4. P E S of some low-lying 1Αχ states of the 
rectangular LLj model . 
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Figure 5. P E S of some low-lying 1A2 states of the 
rectangular L14 model . 
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R (a.u.) 

Figure 6. P E S of some low-lying XB\ states of the 
rectangular L14 model . 
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-29.02 H 

R (a.u.) 

Figure 7. P E S of some low-lying 1B2 states of the 
rectangular L14 model . 
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to the linear situation). We encounter an intruder around a = 0.3. 
We select the function φι as the determinant whose HF orbitals are 
used throughout our calculations. 

We have applied the pair of SS-MRCEPA theories to generate the 
ground state PES. We depict in Figure 8 the ground state PES for 
the H4 model, and compare them with the FCI results. Throughout 
the PES, both the SS-MRCEPA methods are in excellent numerical 
agreement with the FCI values for every a. Moreover, both the SS-
MRCEPA methods are seen to be free of the intruder state problem, 
as is evident from the non-divergence of the PES around a = 0.3. To 
further ascertain the potentiality of the SS-MR methods, we sum
marize in Table I the correlation energies for the ground state of 
H4 model along with those of other standard MR techniques. For 
the ease of comparison, we present only the energy differences from 
the corresponding FCI values, AE = (Epci ~ ^method)- A perusal 
of the table clearly reflects that all the SS-MR methods and the 
sr-MRBWCC method are intruder free. In a global manner the per
formance of the SS-MRCC method is the best. The sr-MRBWCC 
method is the MR-based state-specific nonsize-extensive formulation 
of Hubac et ai [34]. The MRL-CCSD approximation is the lin
earized version of the SU-MRCCSD [52], which is intruder-prone. 
It indeed displays a serious singular behavior around a = 0.2, and 
fails completely in the non-degenerate region. The SS-MRCEPA (0) 
results are excellent, and the SS-MRCEPA(2) results are also good. 
The behavior of the effective hamiltonian based linearized version 
of the MR-BW theory of the Hubac et al [34] is also reasonably 
good, but consistently inferior to our SS-MRCEPA(O), which is also 
a linearized theory. 

As a further test of the robustness of the formalisms, we have 
deliberately homed in on to the excited root while diagonalizing the 
effective matrix to generate the first excited state. It is gratifying to 
note that, although φι is no longer dominant in the domain of ge
ometry studied by us for the excited state, the method still provides 
quite credible results, as a comparison with FCI values depicted in 
Table II shows. However, in the geometries 0.3, 0.4 and 0.5 we cannot 
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evaluate the energies of the 2χΑχ state because the state itself has 
intruders in these geometries. This indicates that the SS-MRCEPA 
theories are applicable for the ground state as well as the excited 
states with equal ease, but these states must be free from intruders. 
However, it is important to mention here that the excited states per
turbed by intruders can still be tackled with the response approach 
based on our SS-MRCEPA methods. 

Table-I Energy differences (in m H ) with respect to the 
F C I values, Δ Ε , of the ground state of the H4 model for 

different values of <*. 

a 0.0 0.01 0.02 0.1 0.2 0.3 0.5 
MRMBPT3 a -2.172 -2.295 -2.386 -2.155 -2.079 -2.136 -2.166 
MR-CISDtt - -1.771 -1.706 -1.277 -1.039 - -0.895 

MRL-CCSDa 3.685 3.610 3.436 5.027 • • • 
MR-CCSDa 0.687 0.594 0.408 0.172 1.186 1.995 2.375 

MRL-BWCCSDa -3.942 -3.961 -3.863 -3.212 -3.071 -3.092 -3.151 
SS-MRCEPA(O) 0.849 0.872 0.968 0.855 0.448 0.254 0.154 
SS-MRCEPA(2) -2.323 -2.461 -2.513 -2.183 -1.871 -1.760 -1.719 

SS-MRCC 0.279 0.188 0.170 0.442 -0.422 -0.393 0.406 
sr-MRBWCCSDa 0.100 0.012 -0.146 -0.582 -0.579 -0.559 -0.548 

Data α taken from Ref [34]. 
MRMBPT3 implies third-order MRMBPT calculation. 
MR-CISD: missing values were not shown in [34]. 
• denotes that no convergence is achieved. 

We compare our results for the excited states with the correspond
ing FCI values as shown in Figure 9 where we have plotted the en
ergies of different states as a function of a. For both the ground 
and excited states of different symmetry with respect to the ground 
state, both the MR-CEPALRT yield results which are close to the 
FCI values over a wide range of geometries, including the points of 
quasi-degeneracy and avoided crossings. The results from the full
blown MR-CCLRT, computed by us earlier [36], are comparable to 
the SS-MRCEPA(2) values, but the latter is much simpler. 
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Table-II. Energies (a.u.) for the 2xAi state of H 4 model . 
Values (mH) within the parenthesis indicate the deviation 

from F C I . 

a FCI SS-MRCEPA(O) SS-MRCEPA(2) 
0.00 -1.981434 -1.986031 -1.978542 

(4.597) (-2.892) 
0.01 -1.980637 -1.985741 -1.977680 

(5.104) (-2.957) 
0.02 -1.974328 -1.980042 -1.971203 

(5.714) (-3.125) 
0.10 -1.900893 -1.955619 -1.892647 

(54.726) (-8.246) 
0.20 -1.866764 • -1.849494 

(-17.270) 

• Divergence 

Summary 

In this article, we have presented the formulation and numerical ap
plications of a set of size-extensive intruder-free state-specific multi-
reference (SSMR) methods based on a CAS designed for the PES of 
a base state whose energy is well-separated from those of the virtual 
functions, and linear response methods based on these methods for 
the PES of other excited states relative to the base state. The parent 
SSMR method is a non-perturbative CC theory, which we call the SS-
MRCC formalism. The approximate variants are the perturbation 
theories (SS-MRPT) of the RS as well as the BW variety, and the two 
non-perturbative CEPA-like truncations (SS-MRCEPA). The sys
tems studied by us are the rectangular LL4 and H 4 models, which 
show strong quasi-degeneracy in certain regions of the PES, while 
there are potential intruders in some other regions of the ground 
state. The illustrative applications are given mostly for ground states 
with varying degrees of multi-reference character, but excited states 
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at certain selected geometries are also described well with these meth
ods. Starting from our recently formulated SS-MRCC method in the 
singles and doubles truncation, we have studied the efficacy of certain 
approximate versions such as the perturbative SS-MRPT in both RS 
and BW forms, and two SS-MRCEPA schemes vis-a-vis the parent 
method. All these approximations preserve the extensivity of the 
parent theory, and perform quite well. Once the ground state is de
termined by these methods, the excited state PES can be accessed 
via the linear response approach based on the ground state function. 
The earlier formulated MR-CCLRT based on the SS-MRCC with sin
gles and doubles for the ground state has also been described briefly. 
In addition, we have developed and applied in this article a pair of 
LRT based on SS-MRCEPA methods from the parent MR-CCLRT. 
We have shown the efficacy of the MR-CEPALRT by comparing the 
results with those computed by FCI, and have shown that they are 
quite good, despite the neglect of a host of terms present in the par
ent MR-CCLRT. Just like the MR-CCLRT, the MR-CEPALRT too 
yield size-intensive excitation energies. 
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Chapter 7 

The Excited and Ion States of Allene 

Rajat K. Chaudhuri1,2,, Karl F. Freed1, and Davin M. Potts1 

1The James Franck Institute and the Department of Chemistry, The University 
of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 

2Indian Institute of Astrophysics, Koramangala, Bangalore 34, India 

Large scale ab initio calculations for the excited states of C3H4 
and C3H4+ are reported here for the vertical ionization potentials 
(VIPs), excitation energies, and oscillator strengths using the 
IVO-CASCI and third order effective valence shell Hamiltonian 
(Hv) methods. The results are in excellent agreement with 
experiment and with those predicted by the MRSDCI and 
ADC(4) methods. The potential energy surfaces (PES) of C3H4+ 
show the presence of a "conical intersection" between the X2E 
and A2E states near 12.3 eV and a 145° dihedral angle, which 
strongly suggests that the experimental peak at 12.7 eV is most 
likely non-vertical in origin and is a "shake-up" type state. A 
similar conical intersection is also observed in the PES of C3H4 

but at a relatively small dihedral angle (105°). We provide 
computations for quartet ion states, triplet neutral states, and 
potential curves for the twisting of neutral allene, quantities that 
have not previously been reported. 

L Introduction 

The photoelectron and optical spectra of aliène (1,2-propadiene) have been of 
considerable theoretical and experimental interest because a significant portion of 
these spectra is not only quite complex but also rather peculiar. The molecular 
point group of aliène in the ground state is D ^ , with the self-consistent field (SCF) 
approximation described by the orbital occupation la^lb^a^aiQJ^Aa^bzle^le4. 
Removal of an electron from the highest occupied molecular orbital 2n (or 2e ) of 

154 © 2002 American Chemical Society 
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aliène yields the positive ion 2 E state, which has been suggested to be Jahn-
Teller unstable. The photoelectron spectrum (PES) of aliène shows two peaks at 
10.06 and 10.60 eV in the first ionization band1. These peaks are split by « 4500 
cm"1 and have been assigned to be the Jahn-Teller components of the 2 E 
molecular ion state. The photoelectron study of Baltzer 2 4 reveals the existence 
of peaks at 12.7 eV, 18.5 eV, 24.05 eV, and 25.45 eV in addition to the main 
peaks at 10.06 eV and 10.60 eV. Although the peak at 12.7 eV is clearly visible 
in the earlier PES study of Kimura et al.1 and Bieri et al.5, no comments have 
appeared regarding this low intensity peak until the recent reports of Baltzer et 
al2 Based on ADC(4) 6 (algebraic diagrammatic construction accurate to 4th 
order in the electron-electron interaction) theoretical calculations, Baltzer et al. 
assign this low intensity peak as a correlation (also called satellite or shake-up) 
state of 2 E symmetry with binding energy 14.05 eV. Since it is quite unusual to 
have satellite states at fairly low binding energies7, this assignment remains 
controversial. Furthermore, the difference between the observed (12.7 eV) and 
the theoretically predicted binding energy (14.05 eV) is too large to be attributed 
solely to computational uncertainties. Recent high level MRSDCI calculations8 

clearly show that the observed peak at a binding energy of 12.7 eV can not be 
simply attributed to a satellite state of the aliène ion if the ion is assumed to be at 
the fixed geometry of neutral aliène. Since the first ionization band in aliène 
already displays clear Jahn-Teller splitting (0.6 eV), it is quite likely that the 
peak at 12.7 eV arises due to strong vibronic coupling involving two electronic 
states, and the transition is most likely non-vertical in origin. Note that 
traditional calculations for the ionization energy spectra of molecules assume a 
vertical ionization transition, which is valid provided the adiabatic Born-
Oppenheimer approximation holds reasonably well. 

The first optical spectrum of aliène by Sutcliffe and Walsh 9 has been followed 
by measurements of Rabalais et al.10 that provide the spectrum from 4.78 to 10.2 
eV. A moderately high resolution gas phase study from 6.2 to 10.7 eV is described 
by Iverson and Russell n . Fuke et ai12 also report the absorption and M C D spectra 
in both the gas phase and in perflurohexane solution from 6.2 to 8.0 eV. The 
absorption spectrum of aliène is rather complex. There is weak structureless 
absorption below 6.45 eV. Four distinct absorption bands are observed between 
6.54 and 9 eV of which the first band is weak with a maximum at 6.70 eV, and a 
strong broad absorption covers the range of 6.95-7.85 eV. Five distinct peaks of 
roughly the same intensity are present in the 8.02-8.38 eV region, followed by a 
strong transition around 8.57 eV. The absorption bands beyond 8.57 eV are fairly 
complicated and remain to be characterized. 

According to Fuke et al.12 and Robin 1 3 , the *Ai , ^ 2 , *Bi and ! B 2 states of 
aliène arise from singlet π-»π* ( e-^e* ) transitions. Among these four excited 
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states, only the ! B 2 state is optically allowed in the electric dipole approximation, 
and the remaining three states are observed as the very weak absorption below 
6.45 eV. In the weak band around 6.70 eV, Fuke et al observe an M C D 
(magnetic circular dichroism) signal with only a Β term type behavior. They 
conclude this is a transition to a non-degenerate Rydberg state and confirm 
Robin's assignment of the upper state as one component of the 2e—>3s (\Ai—^E) 
Rydberg state that converges to the ionization threshold at 10.0 eV, arguing 
moreover that the other component is 4500cm"1 higher, i.e., around 7.30 eV. The 
strong (£=0.34) transition in the 6.95-7.8v eV band exhibits diffuse structure. 
Fuke and Schnepp assign two states to this band: the π-»π* ( ! A r -> 1B 2) valence 
transition and the other component of the n->3s ( lA\->lE ) Rydberg state 
converging to the upper ionization threshold at 10.6 eV. Fuke et al. also observe 
a strong Β term type M C D transition at 7.7 eV in the gas phase. They argue this 
state is of valence character, but Robin assigns this state to the π—»3p Rydberg 
series at 7.3 eV that converges to the ionization threshold at 10.0 eV. The 
absorption spectrum beyond 8.02 eV is rather complex and remains unassigned. 

We describe highly correlated ab initio calculations for the vertical 
ionization and excitation energies of aliène using the effective valence shell 
Hamiltonian (H v) method through third order and our recently developed, more 
approximate IVO-CASCI approach that is a non-iterative replacement (with no 
loss of accuracy) for the popular CASSCF method. In addition, we present the 
ground and excited state potential energy curves of aliène and the aliène cation 
as a function of the torsional angle between the two C H 2 groups in order to 
identify the origin of the mysterious peak at 12.7 eV which is believed to be non-
vertical.8 Several papers document the / f formalism, the computational 
algorithms for evaluating atomic and molecular properties,14*19 and the 
convergence behavior.20"22 Some conceptual advantages of these two methods 
are the following: 

(i) The / f method manifestly maintains the size-extensivity of the computed 
state energies, a property that is known to be crucial for highly correlated many-
particle systems, (ii) A common set of orbitals is used to describe all the state of 
interest. This choice leads to the cancellation of correlation energy contributions 
that are common to all states considered, thereby yielding a balanced description 
of both dynamical and non-dynamical correlation, (hi) A single computation of 
the effective Hamiltonian simultaneously, provides all the ionization potentials, 
excitation energies, and associated molecular properties such as transition dipole 
and oscillator strengths, (iv) While the IVO-CASCI method represents only the 
first approximation within the H v scheme, it provides comparable accuracy to 
CASSCF approaches with greatly reduced computational labor because no 
iterations are required beyond an initial SCF calculation. 
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Section II briefly outlines the theory behind the if method, while the IVO 
generation scheme is described in Section III for systems, such as aliène, where 
there is a degenerate highest occupied molecular orbital in the SCF ground state 
wavefunction. The computations are described in Section IV along with 
comparisons to experiment and other high level calculations. 

Since the basic formalism of the effective valence shell Hamiltonian 
(H v) method is presented elsewhere,23 we only provide a brief overview of the 
approach. As in conventional many-body perturbation theory, the If method 
begins with the decomposition of the exact Hamiltonian H into the zeroth order 
Hamiltonian H0 and the perturbation V, 

where H0 is constructed as a sum of one-electron Fock operators described 
below. The full many-electron Hubert space is then partitioned into an active 
(also called valence) space with projector Ρ and its orthogonal complement with 
projector Q=l-P. The active space spans the space of all distinct configuration 
state functions involving a filled core and the remaining electrons distributed 
among the valence orbitals in all possible manners to ensure completeness of the 
active space. Hence, the orthogonal complement space contains all basis 
functions with at least one vacancy in a core orbital and/or at least one electron 
in an excited orbitals. Thus, we designate the orbitals as "core", "valence," and 
"excited", where the doubly filled orbitals in P-space are denoted as core, the 
partially filled orbitals of P-space are valence, and the orbitals that are 
unoccupied in all active space functions are the excited orbitals. 

With the aid of the projectors Ρ and Q, the tt method transforms the 
full Schrôdinger equation24"25 

II. Theory 

H=H0+V9 (2.1) 

(2.2) 

into the P-space "effective valence shell" Schrôdinger equation 

(2.3) 

where Ψι ν = ΡΨ{ are the projections of the exact eigenfiinctions on the valence 
space, and the energies Ej are the corresponding exact eigenvalues of the full 
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Schrôdinger equation. Here, the effective operator H v through third order is 
given by 

H v

3 r d = PHP + [ Vj2) + V e f f

( 3 ) + h.c ]/2 , (2.4) 

in which h.c. designates the Hermitian conjugate and E0

P is the zeroth order 
energy of the P-space state. The operators Veff(2) and Veff (3) are defined as 

V e f f

( 2 ) = PVQ (EQ

P-QH0Q) ~l QVP (2.5) 

Vj3) = PVQ (Etf-QHoQ)1 V (E0

P-QH0Qïl QVP - PVQ{E0

P - QHoQ)"2VPVP 
(2.6) 

Apart from specifying the reference (P) space, the only variability in this 
and all MR-MBPT methods lies in the choice of orbitals, orbital energies, and 
the definition of the zeroth order Hamiltonian H0 since the perturbation 
approximation is completely determined by these choices. The zeroth order 
Hamiltonian (i.e., the partitioning of the exact Hamiltonian into H0 and V), may, 
in principle, be specified at our disposal, but, in practice, this choice strongly 
affects the perturbative convergence.20"22'26"27 Generally, the zeroth order 
Hamiltonian is prescribed as a sum of one-electron operators, 

H0 (i) =EC |<pc> ec <<pc| + Σν |φ ν) ^ <φν | + Σ 6 |<pe> ee <<pe | , (2.7) 

in terms of the core (c), valence (v) and excited (e) orbitals and their 
corresponding orbital energies. The orbital energies are defined as 

F|9i) = e,|9i>, (2.8) 

where F is a one-electron Fock operator described below. The / f method 
departs from traditional MR-MBPT approaches that are based on a Moller-
Plesset (MP) partitioning scheme in which a single one-electron Fock operator F 
is used to define all orbitals and orbital energies, 

F=^+X i

occ(27 i-i^ i), (2.9) 

where the sum runs over all the orbitals occupied in some reference state (often 
chosen as the ground state). Here h denotes the one-electron portion of the 
Hamiltonian, and 7| and K± are Coulomb and exchange operators, respectively, 
for the occupied Hartree-Fock molecular orbital (ft of the reference state. Since 
this single Fock operator produces potential orbitals and orbital energies for 
those valence orbitals that are unoccupied in the reference state, these 
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potential orbitals are, at best, more suitable for describing negative ions than the 
low lying states of neutral species that emerge from the eigenvalues of If of Eq. 
(2.4). Consequently, this traditional single Fock operator choice is quite 
unphysieal and provides a poor first order approximation (PHP) to the low lying 
states, leaving large contributions to be recovered by the higher order 
perturbation expansion.2^2 2 

To improve the perturbative convergence and to eliminate notorious 
intruder state problems, Freed and coworkers use multiple Fock operators to 
define the valence orbitals.28"30 In their formalism, all the valence orbitals and 
orbital energies are obtained from V*1*"1* potentials, thereby providing a good first 
order approximation (PHP) to the low lying excited states and thus minimizing 
the residual corrections to be recovered by the perturbation expansion. The 
unoccupied valence orbitals are chosen as improved virtual orbitals as described 
in the next section. Moreover, intruder state problems are further reduced in the 
If method by defining the zeroth order Hamiltonian HQ as 

Ho(i) =E c |<p c>e c<(p c | + Z v | φ ν ) ε ν < φ ν | + Z e | <pe> ee<(pe | , (2.10) 

where the average valence orbital energy ε ν is obtained from the original set of 
valence orbital energies by the democratic averaging, 

Ν 
ε ' ν = ( Σ ει ) / Ν , (2.11) 

with Ν the number of valence orbitals spanning the complete active Ρ space 
(CAS). The forced degeneracy condition introduces a diagonal perturbation 5V 
= ε ν - ε ' ν that begins to contribute in third order. Since the magnitude of 5V 
directly depends upon the spread of the original valence orbital energies {ε ν } 
prior to averaging, the forced degeneracy condition is unnecessary for highly 
quasidegenerate CASs because these systems yield 5V « 0. 

III· Generation of Improved Virtual Orbitals (IVO) 

The generation of improved virtual orbitals (IVOs) and orbital energies 
presents a non-trivial problem for systems, such as C 3 H 4 , C 3 H4 + etc., where the 
highest occupied molecular orbitals (HOMOs) are doubly degenerate. Unless 
appropriate Fock operators F are used, the IVOs may break molecular symmetry 
(see below). 

Here we describe briefly the essential aspects of generating the IVOs by 
the simple diagonalization of a restricted CIS matrix. A more detailed discussion 
of the formulation and its computational aspects is given elsewhere.31"32 When 
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the ground (or reference) state of the system is a closed shell, we begin with the 
Hartree-Fock (HF) molecular orbitals (MOs) for the ground state wavefunction, 
Φ 0 = Α[ψι φι <p2 q>2'....<pn φ η ' ] where A is an appropriate antisymmetrizer. The 
indices i,j,k,.. refer to occupied HF MOs {%} and M,V,W,... to unoccupied HF 
MOs. A l l the HF MOs are determined by diagonalizing the one electron Hartree-
Fock operator *F, 

occ 
l F l m = <φ, μ + Σ ( 2 Λ - ^ ) | φ π ι > , (3.1) 

k 
where / and m designate any (occupied or unoccupied) HF MOs and E\ is the HF 
orbital energy. A n excited state HF computation for the low lying singly excited 
Ψα->μ state would provide a new set {χ} of MOs that minimize the energy of 

Ψα-,μ = Α [ χ 1 χ 1

, χ 2 χ 2 ' . . . ( χ α χ μ / ± χ μ χ « ' ) . . . . χ η χ η Ί , (3.2) 

corresponding to the excitation of an electron from the orbital %a to χ μ , where the 
+ and - signs refer to triplet and singlet states, respectively. The new MOs { χ α } 
and { χ μ } may be expressed as linear combinations of the ground state MOs {q>i, 
<pu}. If, however, the orbitals are restricted such that the { χ α } are linear 
combinations of only the occupied ground state MOs {q>i} and the {χ μ } are 
expanded only in terms of the unoccupied {φ„Κ 

χ α = Σ a* (ft ; χ μ = Σ ομη <pu , (3.3) 
i u 

then the new orbital set { χ α , %μ } not only leaves the ground (or reference) state 
wavefunction unchanged but also ensures the orthogonality and applicability of 
Brillouin's theorem between the HF ground state and the singly excited Ψ α -» μ 

states. In addition, this choice also benefits from the use of a common set of 
MOs for the ground and excited states for calculations of oscillator strengths, 
etc. However, i f we avoid the computationally laborious reoptimization of the 
occupied orbitals by setting { χ α } ={<pa}» i-e> by choosing aaj = 5 a j , the 
procedure for generating IVOs simplifies enormously. Hence, the coupled 
equations determining the a«j and c ^ coefficients in Eq. (3.3) reduces to a single 
eigenvalue equation of the form F C = C T , where the operator F ' is given by 
Hunt and Goddard and by Huzinaga 3 3 as 

vw ~ F v w + A v e , (3.4) 

where 1F is the ground (or reference) state Fock operator and where the 
additional term A v w

a accounts for the excitation of an electron out of orbital φ α . 
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A V w a = <Xv| -JA+KA±Ka\x„) · (3.5) 

The minus sign in Eq. (3.5) applies for 3 Ψ α _ > μ a triplet state, while the plus sign 
is for the singlet ιΨα-^ι state.33 The corresponding transition energy is 

u AE (α->μ) = EQ + γ μ - lFaa , (3-6) 

where EQ is the HF ground state energy and γ μ is the eigenvalue of F C = CT for 
the μ-th orbital. 

In order that the {χ μ } retain molecular symmetry, the construction of F 
must be modified from the Hunt-Goddard-Huzinaga scheme to handle systems 
like C3H4 where the H O M O is doubly degenerate. If φ α and φβ designate the pair 
of highest occupied degenerate HF MOs, then the matrix element A v w in equation 
(3.5) is replaced for these degenerate systems by where 

Α ν / > β = (l/2)l(xv\-Ja + Ka±Ka\Xw) + < Z v | - J p + ^ ± ^ | Z w > ] . (3.7) 

It may readily be shown that the excitation energies computed from the single 
excitation configuration interaction (CIS) and the Hunt-Goddard-Huzinaga IVO 
schemes become equivalent when the CIS configurations involve only the 
promotion of an electron from the highest molecular orbital to excited orbitals. 
Consequently, the combination of ground state HF occupied orbital energies and 
the IVO orbital energies provide a zeroth order Koopmans theorem type 
approximation to the low lying excitation energies. More importantly, these 
orbitals are then used in the first order H v method (called the IVO-CASCI 
method) to provide a computationally quite efficient first order approximation 
(from PHP) to excitation energies and excited state properties. Our recent 
works 3 1 , 3 2 demonstrate that the IVO-CASCI method provides comparable 
accuracy to the more laborious CASSCF treatments without the need for 
iterations beyond the initial SCF calculation for the reference state. Furthermore, 
previous discussions of the / f method 1 8 explain why the first order ϋΓ 
wavefunctions provide good starting points for higher level treatments of the 
residual dynamic correlation. 

IV. Computational details 

The molecular geometry of aliène is of D 2 c i symmetry with Rcc =1 308 A 0 , 
RCH=1087 A°, and ZHCH=118.2° 3 4 , where the z- axis is defined as lying along 
the carbon skeleton and the dihedral planes bisect the xy and yz planes. The 
atomic basis is chosen as Dunning's (9s5p/4s2p) contraction35 centered on each 
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carbon atom and (4s/2s) contractions centered on each of the hydrogen atoms. A 
full set of n=3 (s, p, d) Cartesian Gaussian (ξ 5=0.23, ξ ρ =0.021, ^=0.015) is 
added for the central carbon atom. This basis generates 48 contracted Gaussian 
type orbitals (CGTO) and is quite similar to that employed by Diamond et al?6 

The total SCF energy in this basis is -115.8302 au and is comparable to the 
results of Diamond, 3 6 Dykstra, 3 7 and Rauk 3 8 which are -115.8258 au, -115.8303 
au, and -115.8302 au, respectively. Although the basis set is not very large, it is 
employed to here to treat the IVO-CASCI, / f 3 r d and MRSDCI methods on equal 
footing and to compare their efficiencies. Comparisons with experimental 
transition energies and ionization potentials use computations with considerably 
larger basis sets that are described below. 

It is well known that the choice of orbitals, orbital energies, and reference 
space represents the most significant factor determining the convergence and 
accuracy of multireference many-body perturbative methods of both the "perturb 
then diagonalize" and "diagonalize then perturb" varieties, with the selection of 
the appropriate reference space being the most non-trivial. In general, the 
reference space orbitals are selected on the basis of (i) energy criteria and (ii) the 
character of the states of interest. For instance, while the e symmetry orbitals are 
the most important for computing the A i , A 2 , B i , and B 2 excited states of aliène, 
the e and ai orbitals are prominent for describing the degenerate Ε states because 
these states arise from e—»ai or ai—>e transitions. 

However, the selection of reference space orbitals solely based on the 
character of the excited state alone may lead to erroneous results because 
symmetry considerations are also relevant. For example, the 5ai unoccupied 
orbital in aliène contributes significantly to the XlA\ ground state wave function 
but not to the excited Ε state wave function. Since the excitation/ionization 
energy is the difference between the ground and the excited/ion state energies, 
the unoccupied 5ai orbital only indirectly contributes to the Ε state 
excitation/ionization energy. Thus, the inclusion of the 5ai orbital in the 
reference space is necessary not only to improve transition energies but also to 
improve the quality of the ground state wavefunction. Similarly, orbital energy 
criteria are important in the selection of reference space orbitals. Inclusion of too 
many valence orbitals in the reference space may provide a decent first order 
estimate (from PHP) of the transition energies for the state(s) of interest, but this 
large valence space may severely degrade the perturbative convergence because 
of the reduced quasi-degeneracy of the reference space.20"22 At this juncture, it is 
worthwhile mentioning that computationally inexpensive IVO-CASCI 
calculations may be performed for a series of test CASs to ascertain the 
appropriate valence space for higher order treatments. Here we describe the 
excited and positive ion states of aliène as computed with both the IVO-CASCI 
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and third order If methods for several different choices of reference spaces, 
where the smallest and largest valence spaces comprise four and twelve valence 
orbitals, respectively, to demonstrate the general principles outlined above. 

Table I provides equilibrium geometry parameters for aliène and for twisted 
aliène, respectively, while Table II describes a subset of the neutral aliène HF 
molecular orbitals and their energies. Since the energy gap between the le 
(HOMO-1) and 2e (HOMO) occupied orbitals is quite large (0.24 Hartrees), the 
le and 2e orbitals are treated as "core" and "occupied valence" orbitals, 
respectively. The remaining orbitals in Table II are taken as "unoccupied 
valence" or "excited" orbitals depending upon the size of the reference space 
employed in the post-HF treatment. (The orbital energies of the "unoccupied 
valence" and excited orbitals are, of course altered from the HF values in Table 
II as discussed briefly in Sect. III.) The smallest reference space chosen for the 
post-HF treatment is constructed from the 2e and 3e orbitals, while the largest 
reference space is generated by distributing four electrons among the 5ai, 6 a b 

7ai, 2e, 3e , 4e , l b i , 4b 2 , and 5b 2 valence space orbitals (in all possible ways). 
The same set of orbitals is used to compute the transition energies for neutral 
aliène and its positive ion, so the computation of the ionization energies requires 
no extra computational work apart from the diagonalization of the appropriate 
CASCI matrix for the aliène positive ion. Calculations for the twisted geometry 
(D 2 point group) aliène molecule are only reported using a reference space 
composed of the 5ah 6&ι, 7ai, 2e, 3e9 and 4b 2 orbitals for both neutral C3H4 and 
its positive ion. 

A. Excited states of C3H/ 

Table III presents the vertical ionization potentials (VIPs) of aliène as a 
function of reference space for production of the X 2 E , X 4 E , A 2 E ion states, 
respectively. Our extensive IVO-CASCI and third order H v calculations clearly 
demonstrate that (a) dynamical correlation contributes significantly to the VIPs 
and that (b) the difference between the experimental and the computed VIPs 
(from the third order If computations) decreases as the reference space increases 
from four to ten. A further increase in the size of the valence space spoils the 
accuracy of the computed VIPs. (c) The computations further indicate that the 
experimental peak at 12.7 eV can not be due to a vertical transition. 

Table IV compares the VIPs of aliène, as obtained from the IVO-CASCI 
and H v methods, with those obtained from the M R S D C I 8 method and from 
experiments1. Although our IVO-CASCI estimate for the 2π valence ionization 
potential is comparable to that obtained from the MRSDCI approach, it 
substantially departs ( « 0.3 eV) from the experimental value, consistent with the 
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Table I. Geometrical properties of aliène. 

Parameter Experimental geometry1 MP2/6-311g** optimized geomertry 
Rc-c 1.308 A° 1.313 A 0 

RC-H 1.087 A 0 1.086 A 0 

ZHCH 118.2° 121.1° 

1. Ref. [34] 

Table II. S C F orbital properties for al iène. [AU entries in au] 

Orbital Character Type Exptl. Optimized 
symmetry Geometry geometry 

le σ HOMO-1 -0.6123 -0.6123 
2e π HOMO -0.3784 -0.3777 
5a, 3s LUMO 0.0184 0.0184 
6a, 3d* LUMO+1 0.0516 0.0516 
4b2 3dxy LUMO+2 0.0526 0.0526 
3e 3dXZiJlj LUMO+3 0.0531 0.0531 
lb, 3dX2-y2 LUMO+5 0.0532 0.0532 
5b2 3pz 

LUMO+6 0.0587 0.0587 
4 3P(x.y) LUMO+7 0.0594 0.0594 

7a, 4s LUMO+9 0.1059 0.1058 
5e π* LUMO+10 0.1629 0.1629 
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Table III. Variation of vertical ionization potential (in eV) of aliène as a 
function of valence space. (AH calculations are performed at the 
experimental geometry.) [The top entry for each state is obtained the IVO-
CASCI calculations, and the bottom one is from H v

3 r d calculations.] 

State 4V' 6V2 8V3 10V* 12V5 

XZE 10.41 10.41 10.41 10.41 10.38 
10.02 10.03 10.01 10.03 9.91 

X 4E 15.43 15.43 15.43 15.37 15.33 
14.49 14.58 14.57 14.67 14.58 

A 2E 15.88 15.88 15.88 15.81 15.78 
14.82 14.91 14.92 15.01 14.92 

1. [2e3e]4 

2. [2e 3e 5at 

3. [2e 3e 5nx 62LX 7SL{ 4b2 f 
4. [2e 3e 5ax 6Ά{ 7ax 4b2 5b2 l b j 4 

5. [2e 3e 4e 5^ 6a1 7a! lb! 4b2 5b2]4 

Table IV. Ionization potential (in eV) of al iène from the 10 valence 
(10V) orbital reference space I V O - C A S C I and third order ΈΓ 

calculation. 

State IVO-CASCI If 3rd MRSDCI1 ADC(4f Expt3 

XZE 10.41 10.03 10.30 10.19 10.06 
X*E 15.37 14.67 
A 2E 15.81 15.01 14.90 14.05 

1. Ref. [8] 
2. Ref. [2] 
3. Réf. [1] 
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IVO-CASCI treatment giving comparable accuracy to CASSCF calculations, but 
with greatly reduced computational effort. Inclusion of higher order dynamical 
correlation contributions significantly improves the 2n VIP, which however 
becomes slightly poorer for the largest valence space that begins to suffer from a 
lack of quasidegeneracy. 

The torsional potential energy curves for the positive aliène ion in Fig. 1 are 
generated by scanning the dihedral angle with all internal coordinates fixed at 
their experimental values. When the dihedral angle equals 90 degrees, C3H/ (as 
well as C3H4 ) has D 2 d point group symmetry. As the dihedral angles increases 
(or decreases), the symmetry of C 3 H / (as well as C3H4) changes to D 2 , finally 
returning to D 2 h symmetry for dihedral angles of 0 and 180 degrees. The 
potential energy curves depicted in Fig. 1 clearly indicate the presence of a 
"conical intersection" between the upper Jahn-Teller component of the X 2 E state, 
which is labeled as 2 B 3 for D 2 symmetry, and the lower Jahn-Teller A 2 E state, 
which is labeled as 2 B 2 for D 2 symmetry. This intersection occurs at 
approximately 12.3 eV above the ΧιΑγ C3H4 ground state (at a torsional angle 
145°), which corresponds to 2.3 eV above the X 2 E C3H/ ground state (at a 
torsional angle of 90 degrees) and is in good agreement with the MRSDCI 
estimate (12.3 eV) and with the experiment (12.7 eV). It is worthwhile to 
mention that photoioniation mass spectra of aliène 3 9 also indicate the presence of 
a peak at around 12.5-13.0 eV. Furthermore, the third order H v binding energy 
(15.01 eV) for the first A 2 E state of the aliène ion are in good agreement with 
experiment and MRSDCI calculations. 

As seen from Table IV, the IVO-CASCI and if3rd VIPs differ from the 
MRSDCI and ADC(4) values by only 0.1 eV and 0.2 eV, respectively. Our large 
basis set calculations for the VIPs of aliène clearly indicate that the source of this 
deviation is purely a basis set effect. Table V compares the IVO-CASCI and 
¥t3rd VIPs using bases of increasing size. It is evident from Tables IV and V that 
the IVO-CASCI and rT3rd estimates of the VIPs approach the MRSDCI and 
ADC(4) values, respectively, when similar size basis sets are employed in the 
calculations. Note that Baltzer et al. employ a basis with 93 C G T O functions 
(6s4pld for carbon atoms and 3slp for hydrogen atoms) in their ADC(4) 
treatment, which is almost twice the size of the basis (Basis I) used in the present 
calculation of VIPs and transition energies for aliène. 

Β. Excited states of C3H4 

The optically allowed transitions between the ground and excited states of 
aliène are X!Ai—»*B2 (polarized along the molecular axis) and XlAi—>lE 
(polarized perpendicular to the molecular axis). The four singlet states arising 
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Figure 1. Plot of the ground and excited state potential curves of C3H/ as a 
function of dihedral angle φ. 
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Table V . Basis set dependence of I V O - C A S C I and H v

3 r d vertical 
ionization potential (in eV) for al iène. [AU calculations are 

performed at the experimental geometry with the 6V reference 
space. The top entry for each state is obtained from I V O - C A S C I 

calculations, and the bottom is from H v

3 r d calculations. ] 

State Basis I' Basis II2 Basis IIf Basis IV4 

X 2 E 10.41 10.30 10.29 10.31 
10.03 10.16 10.27 10.20 

X 4 E 15.43 15.19 15.27 15.21 
14.58 14.54 14.67 14.58 

A 2 E 15.88 15.68 15.76 15.70 
14.91 14.88 15.03 14.91 

1. See text. Total number of CGTO is 48. 
2. Triple zeta valence (TZV) with ρ and d polarization for heavy atom. Total number of 
CGTO is 84. 
3. PVDZ Correlation Consistent basis set40. Total number of CGTO is 95. 
4. Triplet zeta valence (TZV) with p, d and /polarization. One s and one ρ diffuse 
function is added on each carbon atom. Total number of CGTO is 114. 
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from π (e) —> π* (e*) excitations are calculated to be in the energetic order of 
llA2 < llBt < 4 ιΑχ < 3 1 B 2 . The excitation energies and oscillator strengths 
obtained from the IVO-CASCI and tf3rd calculations are compared with 
experiment and with the MRSDCI results of Diamond et al36, in Table VI . The 
lowest excited singlet state is an optically forbidden 1A2 state. The IVO-CASCI 
calculation predicts this state to be 6.60 eV above the ground state, which is 
quite close to the MRSDCI value (6.57 eV). Although the IVO-CASCI 
excitation energy is in accord with the MRSDCI estimate, it overestimates the 
XlAi -> lA2 transition energy by 0.15 eV. The lf3rd calculation predicts this 
X l A i -^A2 transition energy to be 6.10 eV, in good agreement with experiment 
(<6.45 eV). The observed optical spectrum10"12 in the region 6.5-6.9 eV contains 
a weak absorption with partially resolved vibrational structure. The calculated 
states in this region are the optically allowed lE state and the forbidden ! B i state. 
The ff3rd excitation energy and oscillator strength for the optically allowed lE 
state is reasonably close to both experiment and theoretical calculations. The 
spectrum in the 7.0 -8.0 eV region exhibits a strong broad diffuse band. The 
ff3rd calculations assign this state as due to the optically allowed *B 2 state at 
7.53 eV (£=0.233), in accord with the MRSDCI transition energy (7.45 eV) and 
oscillator strength (/==0.285) as well as with experiment. There exists another 
weak but allowed transition in this region. The If3rd assigns this state as the 2lE 
state at an excitation energy of 7.68 eV (/==0.038). As seen from Table VI , the 
ff3rd transition energies and oscillator strengths are consistently in good 
agreement with experiment for the low lying states. The accuracy of the If 
energies sharply falls above 8.2 eV, a deficiency that can be reduced partially by 
using a state selective reference space.1 9'3 2 However, such a state selective 
treatment is beyond of the scope of the present analysis. 

The C3H4 torsional potential energy curves depicted in Fig 2 are generated 
by scanning the dihedral angle with all internal coordinates fixed at their 
experimental values. Unlike C 3 H / , the high lying potential energy curves 
become too complicated for display at large dihedral angles, and, hence, only a 
portion of the curves is presented here. Figure 2 clearly demonstrates the 
presence of an intersection near 105° between the ! A 2 a n d l*Bi excited electronic 
states at 6.1 eV (with respect to the tf3rd XlAi state energy computed at the 
experimental geometry). A similar curve crossing is also observed between the 
! B 3 and ! B 2 electronic states at 7.5 eV. The present study shows that the 
degenerate Ε electronic excited states of C 3 H 4 undergo curve crossings at much 
lower dihedral angles than those in C 3 H / , which is quite as expected. 

Table VII compares the IVO-CASCI and tf3rd vertical excitation energies 
(VEE) using bases of increasing size for a fixed C A S generated by allocating 
four valence electrons among the 2e, 3e, 5a 1 ? and 6ai valence orbitals in all 
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Table VI. Vertical excitation energies (in eV) and oscillator 
strengths (within parentheses) of al iène computed at the 

experimental geometry. 

State IVO- lT3rd MRSDCI1 Optical MCD3 

CASCI absorption 
band2 

1% 4.80 4.59 
1 3 B 2 5.09 5.06 
1 3 A 2 6.44 6.02 
1*A2 6.60 6.10 6.57 <6.45 
1 3E 7.21 6.66 
llE 7.38 (0.07) 6.79 (0..07) 6.88 (0.08) 6.5-6.9 6.5-6.9 

1 3 B 1 6.89 6.34 
1% 7.16 6.52 6.92 
1*B2 8.03 (0.21) 7.53 (0.23) 7.45 (0.29) 6.95-7.85 7.1-7.5 

(0.34) 
2 3 B 2 8.24 7.71 
23AX 8.22 7.72 
2 % 8.31 7.74 7.61 
2 3 E 8.23 7.63 
2*E 8.28 (0.05) 7.68 (0.04) 7.69 (0.04) 
3 3 E 8.79 8.26 
3lE 8.84 (0.04) 8.30 (0.04) 8.20(0.04) 8.02 
2% 8.97 (0.01) 8.46 (0.02) 8.34 (0.03) 8.15 
3lAl 9.07 8.48 8.31 
4 3 E 9.04 8.57 
4lE 9.05 (0.01) 8.58 (0.01) 8.42 (0.02) 8.25 
4% 10.37 8.76 8.53 
3*B2 11.01 9.74(1.21) 9.07(1.04) 8.5-9.0 

(1.33) 

1. Ref. [36] 
2. Ref. [10] 
3. Ref. [12] 
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Figure 2. Plot of the excited state potential curves of C 3 H 4 as a function of 
dihedral angle φ. 
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Table V I L Basis set dependence of I V O - C A S C I and r T 3 r d vertical 
excitation energies (in eV) for aliène. [AU calculations are performed 
at the experimental geometry with the 6V reference space. The top 
entry for each state is obtained from I V O - C A S C I calculations, and 

the bottom one from H v

3 r d calculations. ] 

State Basis I1 Basis II2 Basis III3 Basis IV* 
1% 4.79 4.76 4.84 4.78 

4.59 4.41 4.53 4.43 
1 3 B 2 5.09 5.03 5.10 5.05 

5.05 4.78 4.88 4.78 
1 3 A 2 6.48 6.27 6.32 6.28 

5.91 5.60 5.60 5.57 
l ' A 2 6.63 6.46 6.51 6.46 

5.99 5.71 5.73 5.67 
1 3E 7.22 8.40 7.09 8.41 

6.72 7.95 6.84 7.98 
l ' E 7.42 8.77 7.31 8.76 

6.88 8.21 7.01 8.05 

1. See text. Total number of CGTOs is 48. 
2. Triple zeta valence (TZV) with ρ and d polarization functions for heavy atom. Total 
number of CGTOs is 84. 
3. PVDZ Correlation Consistent basis set40. Total number of CGTOs is 95. 
4. Triplet zeta valence (TZV) with p, d and /polarization. One s and one ρ diffuse 
function is added on each carbon atom. Total number of CGTO is 114. D
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possible ways. The twin facts that the excited states of Ah B 2 , A 2 , and B i 
symmetries both arise from a 2e—> 3e transition and that the computed VEEs for 
these symmetries changes insignificantly with increasing size of the basis set 
indicate that the presence of additional diffuse and polarization functions does 
not affect the character of the unoccupied (at the SCF level) 3e M O . On the other 
hand, it is also evident from Table VII that the presence of polarization and 
diffuse functions considerably affects the computation of the excitation energies 
of Ε symmetries which arise from 2e—> a!* transitions. 

V . Concluding Remarks 

We compare the vertical ionization potentials, excitation energies and 
oscillator strengths of aliène using the IVO-CASCI and third order If method 
with experiment and with other high level computations. The optically allowed 
transitions in aliène arise from valence—^Rydberg and valence π—»π* excitations. 
Our computed transition energies (ionization potentials and excitation energies) 
and oscillator strengths are in excellent agreement with experiment and previous 
high level theoretical calculations. We also report singlet —» triplet transition 
energies and quartet state ionization potentials which emerge as a byproduct of 
the method with "no extra" computational cost. The present study also indicates 
that the computationally inexpensive IVO-CASCI method is capable of 
providing fairly accurate molecular properties in situations where dynamical 
correlation is of less importance, i.e., the method is of comparable accuracy to 
the widely used CASSCF approach but requires considerably less C P U time. 

The present calculations for the ground and excited states of C04+ suggest 
that the experimental peak near 12.7 eV probably arises due to the presence of 
strong vibronic coupling between the two doublet Ε states that undergo a surface 
crossing for a torsional angle near 145° and an energy of 12.3 eV. Alternatively, 
the weak peak at 12.7 eV may arise from the combined effects of spin-orbit and 
vibronic couplings between the doublet and quartet Ε state, which also exhibit a 
"conical intersection" (see Fig. 1) at 14 eV near a dihedral angle of 110°. 
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Chapter 8 

Hamiltonian Matrix Elements for the Table-CI 
Method Using Genealogical Configuration 

State Functions 

Yuriy G. Khait1,2 and Mark R. Hoffmann1,* 

1Chemistry Department, University of North Dakota, Grand Forks, ND 58202 
2Permanent address: 14 Dobrolyubova Avenue, Russian Scientific Center "Applied 

Chemistry", St. Petersburg 197198, Russia 

All necessary formulas for Hamiltonian matrix elements in the 
table-CI method are presented in computationally amenable 
form. In contrast to the initial variant of the method, as 
developed by Buenker, the obtained formulas allow one to 
avoid intermediate calculations of separate determinantal 
matrix elements but instead allows calculation of the 
Hamiltonian matrix elements directly in the basis of 
configuration state functions (CSFs). The recently suggested 
variant of a genealogical scheme for constructing CSFs in the 
context of table-CI is used, which results in reducing the 
number of contributions to typical matrix elements by 
approximately a factor of 2. 

The configuration interaction (CI) method and, especially, its multireference 
variants (MRCI) have proven themselves useful for the study of both ground and 
excited states potential energy surfaces. Most of the developed CI algorithms 
rely heavily on the existence of well-defined relationships among configurations 

176 © 2002 American Chemical Society 
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of spatial orbitals [see, e.g., Refs. (1-4) and the recent review by Sherrill and 
Schaefer (5)]. Here, we discuss the table-CI method, originally developed by 
Buenker and co-workers (6-9), which is very efficient for performing CI 
calculations even when the set of configurations is thoroughly random. Although 
the initial variant of the method was suggested for performing multireference 
singles and doubles CI calculations with configuration selection and energy 
extrapolation procedures (10), the technique of the table-CI method is 
considerably more general and can also be used in the framework of other 
approaches, including methods of quasidegenerate perturbation theory (11). 

The table-CI method is a configuration-driven algorithm in which 
Hamiltonian matrix elements are calculated for pairs of interacting 
configurations in a basis of spin-adapted configuration state functions (CSFs) 
and avoiding explicit comparisons of Slater determinants through the use of 
special compact tables. Although the efficiency of the method has been 
confirmed by concrete calculations and its basic ideas were described by 
Buenker (6), explicit formulas of the method have not been reported. In the 
present work, we present such formulas for all possible classes of interacting 
configurations. Furthermore, in contrast to the original variant of the table-CI 
method, the obtained formulas allow one to avoid intermediate calculations of 
separate determinantal matrix elements and instead to calculate the Hamiltonian 
matrix elements directly in the basis of configuration state functions (CSFs) 
using molecular integrals. In addition, due to the use of a genealogical scheme 
for constructing CSFs [see, e.g. Ref. (12)] that was developed recently in the 
context of table-CI (13), the number of contributions to a given matrix element is 
reduced by approximately a factor of 2. 

The remainder of the paper is organized into three sections. The use of 
genealogical CSFs in the table-CI method is described briefly in the subsequent 
section while the basic formulas for Hamiltonian matrix elements over 
genealogical CSFs are discussed in Section III. A final section presents 
concluding remarks. 

Use of Genealogical CSFs in the Table-CI Method 

The table-CI method makes use of the well-known fact that the same 
expansion coefficients of CSFs over determinants can be employed for all 
configurations with a given number of open shells if an isomorphic relationship 
between determinants of such configurations is established. To effectively use 
this fact, an arbitrary iV-electron configuration Φ(&) with k open and q=(N-k)/2 
closed shells is written in the form 

Φ(Λ) = ^ 2

2 . . . / ^ ι Λ · · · Λ ' (D 
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involving subsets of ordered indices of doubly (ι'ι<ΐ2<···<ίς) and singly 
(/Ί</2<·. </k) occupied orbitals. Then each determinant Dtfo(k)) with a given 

total spin projection S z, created by Φ(&), will be represented in second quantized 
form as 

d, =λ;λ;...λ;ά+ tâ+ ,...â+, (2) 
' Η h 'q Jift J2p2 JkPk 

where A. + = α+αά+β and a set / ^ (p Î , / ?^ , . . . , / ?* ) of integers ρ*, specifies an 

assignment of a(ρ'. = 1 ) and β(ρ'.=-\) spins to open-shell orbitals in such a 

way that p[ + p\ + ... + p[ = 2SZ. Eq. (2) permits one to set up the desired 

isomorphism between determinants created by different configurations, with the 
same number of open shells, but specified by the same spin assignment set Pt. As 
a result, each CSFF 7 (0 (£) )wi th fixed spin quantum numbers S and Sz can be 
expanded over the determinants Dt(<&(k)) with the same 5Z, 

d(k,Sz) 

Σ Ο ν fe[i*(W)]. (3) 

where the coefficients j c ^ } do not depend on the specific configuration but 

only on the triple index (k,S,Sz). The number of CSFs and determinants with 
fixed S and Sz equal 

S (iJfc + S + l) 

( k λ ( k \ (4) 

In the case of the spin-free Hamiltonian, when it suffices to use CSFs with 
the maximal spin projection S=SZ, the genealogical scheme has been recently 
shown (13) to lead to a matrix C(k) =||Cif)|| with quite simple structure, if 

determinants {Dt (Φ(£))} with a fixed Sz [and, hence, spin assignments sets {Pt} 
(so-called branching trajectories)] are ordered in a so-called lexical ordering. 
Since all such determinants contain the same number k(a)=k/2+Sz of a spins, 
each determinant Dt (and, hence, trajectory Pt) is uniquely specified by a vector 
Wr=(mi,/n^.. . ,w^ e )) of positions ( i < m ( < m

t

1 <m'k(a) <k) of only a spins 

(e.g., i f Pf=(lA,l) then mt=(l,3)). Trajectories are considered to be lexically 
ordered and trajectory Pt precedes p . i f the first nonvanishing component in the 

vector mr -mt is positive (e.g., i f k=3 and S ^ l / 2 , then d(kJ5J=3 and P i=( l , l , -

1)» rV=( 1,-1.1), ^3=(-1,1,1)). In this case, the sequential index of an arbitrary 
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determinant D„ which is specified by a given vector m„ in the set of lexically 
ordered determinants {Dt (Φ(&))} is equal to (14) 

f k ' -m. (5) 

We will refer to the subset of determinants {Dm }*if] whose trajectories lie in 
the first quadrant in (k,Sz) coordinate space as main determinants. It has been 
shown that CSFs have a nonzero projection on the main determinants and, in the 
case of using the genealogical CSFs, the block of the C(k) matrix turns 

out to be lower triangular (13). Such structure of the C(k) matrix is compatible 
with the idea of a double representation of CSFs, which is actively used in the 
table-CI method. Indeed, in addition to expansion (3), each CSF can also be 
written as a linear combination of only the projected main determinants 

(6) 

where Ρ is a projector on desired spin states. The matrix Uw^J * s u P P e r 

triangular and can easily be determined recursively using 

(7) 

As a result, using representation (3) for a CSF, Fj2) » of a "right" configuration 

φ 2 =Φ(£ 2 ) , and representation (6) for a CSF, F ;

( 1 ) , of a "left" configuration 

Φι=Φ(&ι) with ki>k2, one gets 

( F » | j i | F « > ) - £ w * > X C^(DJ»\H\D^Y 
M=l t=l 

(8) 

Note that the first sum involves only the main determinants Ζ ^ Ξ Φ Ι with Af</, 

while the second sum involves formally all determinants £ ) , ( 2 ) € Φ 2 . The table-CI 

method allows one to specify the few determinants {ρ£ } }e Φ 2 that have nonzero 

interactions with a given D^K a n ^ thereby to effectively calculate sums 
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Σ€^(&Μ\Η\Ο12)} u s * n g molecular integrals. Taking this fact into account, 

the following algorithm can be used for constructing Hamiltonian matrix 
elements nu =(f/

(1) | / ϊ | ^ ( 2 ) ) simultaneously over all CSFs created by two 

configurations, without any preliminary construction of separate determinants 
matrix elements: 

h Initialize: {HU = θ } * £ = 1 , gi=g(kuSl gi~g(k2,S) 

2. Loop over main determinants: e Φ ι , M e [l»gi] 

Construct array 

3. Loop over left CSFs: F z

( 1 ) e Φι, /€ [M,gi] 
4. Loop over right CSFs: FJ2) e Φ 2 (Je [hg2]) 

HU=HU+W^^GM[J] 

Note that the algorithm: 1) permits one to determine contributions of molecular 
integrals simultaneously to all matrix elements over CSFs created by the 
configuration pair, and 2) requires, due to using genealogical CSFs, only about 
gi(g\+l)gil2 operations. Traditional schemes of generating CSFs (including, 
e.g., diagonalization of S2, which has been used in the conventional table-CI 
method) would require about two times as many operations (~g\g\gi). 

Analysis of Relationships Between Pairs of Configurations 

Due to the Hermitian nature of the Hamiltonian operator, it suffices to 
consider only pairs of configurations with AK = j(kx -k2)>0. It is clear that 

configurations with AK>2 cannot interact. Buenker showed (6) that there are 
only nine non-trivial relationships between random pairs of configurations [one 
with ΔΚ=2, three with ΔΚ=1 (Pe[l,3]), and five with ΔΚ=0 (Pe[l,5])]. A l l 
cases are shown in Table I. Given ΔΚ, a parameter Ρ labels types of molecular 
integrals required for calculation of interaction between configurations. Each 
case is determined by a diagram specifying the occupation numbers of the shells 
distinguishing a "left" configuration Φι (at the top of the diagram) and a "right" 
configuration Φ 2 (on the bottom). 

Following Buenker (6), we begin the analysis by consideration of the 

simplest (ΔΚ=0, P=4) case, with diagram ί Φ ι ) = ί 2 0 1 = β 2 / & 2 (a<b), that describes 
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Table I. Possible non-vanishing relationships between random pairs of 
configurations 

ΔΚ Ρ Main diagrams No. ofR Level of Required 
subcases excitations integrals 

' i n n 
2200 

=abcd/a b ,2u2 
6 doubles (ac\bd)t (ad\bc) 

(m2)=abcd2/a2b2d 
,220lJ 
< 1 1 1 0 1 = « 
,0021J 

abc/c d 
doubles (ac\bd), (ad\bc) 

1 2 

(2n)=a2bc/b2c2 

,022) 1 

• Λ ΐ Λ doubles (ab\ac) 
m)=bc/a2

 l 

,200) 

1 3 

'n)=ab/a2

 γ 

<2®) singles and . , , , w . . . 
hLm,2 ! doubles ^ (ab\cc), (ac\bc) 

,02j 

1 (ac\bd), (ad\bc) 

0 1 4 doubles (ab\dc), (ac\bd) 

( 2 2 l Î ) = û ^ 2 / û V C d 1 (ac\bd),(ad\bc) 

(2™)=a2b/b2c 
{021} 1 

0 2 / ï m \ 22 doubles (ab\ac) 
ΙυΐΔ \=bc/ac ι 
U o i J 

0 3 

1 

'™Χ=αΛ> 1 

M) singles and . , s , ,» . 
^ - α * 2 / < Λ , doubles ^ (ab\cc), (ac\bc) 
l2lj 

0 4 
o n " " ^ 1 doubles 

0 5 diagonal case 1 doub le s^ h a a> J a b> K a l> 
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configurations with the same set of open shells but differing in one of their 
closed shells ( ΰ 2 € Φ 1 } & 2 Ε Φ 2 ) . Since, determinants of the configurations are 
already connected through the double excitation a^^bj>^ a given main "left" 
determinant Ζ ^ Ξ Φ Ι can interact with only one determinant £ > ί

( 2 ) ε Φ 2 in which 

the spin assignment for all singly occupied orbitals is the same as that in D$. 
Hence, both these determinants are specified by the same branching trajectory 
and their sequential indices coincide. For all such determinants, the matrix 
element {pM | / f is always equal to the exchange integral KAB. Using Eqs. 

(7) and (8), one can state that the block of the Hamiltonian matrix over CSFs 
created by the configurations under consideration is diagonal, 

(F 7

( 1 ) \Ê\F}2)) = 8UKAB, /, Je[hg(k,S)l (9) 

Analysis of the AK=2 Case (*1=*2+4) 

Although the AK-2 case is also sufficiently simple, it permits one to 
demonstrate Buenker's technique to avoid explicit comparisons of determinants 
through the use of special tables. As seen from Table I, the AK-2 case is 

described by only one diagram 2b2\ the four ordered open 

shells a, b, c, and d in Φ! (a<b<c<d) are balanced by two closed a2 and b2 shells 
in Φ 2 , while all the remaining singly and doubly occupied orbitals are the same 
in both configurations. Since determinants and D$2) are already connected 

through a double excitation, they can interact only i f their spin assignments for 
common open shells are identical. Since the total spin projection of four 
electrons, described in by the a, b> c, and d orbitals, must be zero, the first 
sum in Eq. (8) can involve only main determinants D$ whose trajectories 
include two a and two β spins for these four orbitals. A l l possible six spin 
assignments (ααββ, αβαβ, etc.) for the a, b, c, d orbitals in are labeled in 

Table II with a parameter Zj^e [1,6]. Each determinant of such type, with 

trajectory PM, can interact with only one determinant , whose trajectory 

PtM is obtained from PM by removing four spins at the positions (na,nb,nCJnd) of 

the a, b9 c, and d orbitals among all kx open shells in Φι (\<na<ny<nc<n^k\). 
To simplify calculation of the matrix element (j)™ | # | l > ^ , it is 

convenient to transfer the orbitals distinguishing the configurations to the first 
positions in the determinants. The permutation of the a2 and b2 closed shells to 
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Table IL Electron repulsion integrals (I1J2) and linear coefficients (/1/2) for 
the AK=2 case 

R- Basis 
. Z ^ = i ZA/=2 ZM-3 Zm=4 ZM-5 ZM-6 

subcases n^g!^tS οαββ αβαβ αββα βααβ βαβα ββαα 
Ui42J 

ί""1 
U200J 
ί""1 
(,2002J 
ί""1 

1,0202J 

[θ022; 

(ac\bd), 
(ad\bc) 

(ab\cd), 
(ad\cb) 

(ab\dc), 
(ac\db) 

(ab\dc), 
(ac\db) 

(ab\cd), 
(ad\cb) 

(ac\bd), 
(ad\bc) 

(-1,1) (0,-1) (1,0) (1.0) (0,-1) (-1.1) 

(0,1) (1,-D (-1,0) (-1,0) (1,-D (0.1) 

(0,-1) (1,0) (-1,1) (-1.1) (1.0) (0,-1) 

(0,-1) (1.0) (-1.1) (-1,1) (1.0) (0,-1) 

(0,1) (1,-D (-1,0) (-1,0) (1,-D (0,1) 

(-1,1) (0,-1) (1.0) (1.0) (0,-1) (-1,1) 

NOTE: Since for any pair (R,ZM) f£l-RfZM)=MRJ--ZM)=MR,ZM) (i=l,2), it suffices to 
store only coefficients fi(R,ZM) for pairs (Λ,ΖΜ) with R,ZM =1,2,3. 

their first two places within leads to the so-called paradigmatic determinant 

with the same sign as . But the permutation of the a, b, c, and d 

orbitals within D$ leads to the paradigmatic determinant = w(Q(l))D^K 
where 

W(QM)=(-l)na+nb+«c+»d (10) 

is the parity of the permutation Q(l\ The Hamiltonian matrix element between 
the paradigmatic determinants may easily be determined for any ZM using 
Slater's rules (75). E .g., in the Z M = 1 case, when a spin assignment for the four 
orbitals abed in is ααββ, one has D$ =\aabacpdp ...|» 

(D£> \H\ £>£> ) = -(ac I bd) + (ad\bc), (11) 
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where the bracketed quantities denote electron repulsion integrals in chemists' 
notation 

(ac I bd) = (a(l)K2)|—\c(l)d(2)) · (12> 

In the above-mentioned diagram, the a and b orbitals were selected as 
doubly occupied in Φ 2 . One could also select other pairs (a2c2

9 b2d2 etc.) as 
closed shells in Φ 2 . A l l such possibilities are labeled in Table Π with a parameter 
Re [1,6], and, for each /?, the same six spin assignments Ζ^β [1,6] for the orbitals 
abed in are possible. For an arbitrary pair (/?,ZM) one has 

(D$ \H ID™) = wiQVfoiR^ )/,(#) + f2(R,ZM ) / 2 (*)]· (13) 

The electron repulsion integrals I\(R) and I2(R) for different /?, and specific 
values of the linear coefficients fi(R,ZM) and f2(R,ZM% for all 36 possible pairs 
(R,ZM) are given in Table Π. Since for each there * s o n t y o n e interacting 
determinant D^K using Eqs. (8) and (13) one finally gets the desired equation 

for the Hamiltonian matrix elements over CSFs created by the configurations 
under consideration, 

(F,(1) |jï| Fj2)) = w(Q(l})£W$>CJ» If, (*,ZM )IX (R) + f2 (/?,ZM ) / 2 (/?)]· (14) 

The concrete numbers of the a, b> c, and d orbitals are only required for 
determining integrals //(Λ) and I2(R) and they can easily be obtained as a result 
of comparison of orbital occupation numbers of the configurations. The task of 
determination of the ZM and tM values for each is more complex and could 
require an analysis at the determinantal level. Taking into account, however, that 
both the ZM and tM values and w(Q(l}) do not depend on concrete a, by c, and d 
orbitals but only on their (na,nb,nc,n4) positions among k\ open shells in Φι, 
Buenker suggested to tabulate pairs (ZM, tM) for all (created by 
configurations with the required numbers k\ of open shells) and for all possible 
permutations Q(l)=(na,nb,nC9nd) in advance. Given kh such a table (which we refer 

(k \ 
to as a Z-table) consists of ] subtables, each of which is associated with a 

l 4 J 
concrete permutation and each subtable consists of 2gi+l entries, 
Si =e(*i»'S , )» involving w(Q(i)) and gi pairs (ZM,tM) (one pair for each main 
determinant ). Thus, in the (khAK=2) case, the total dimension of the Z-table 

(2*i+iy 
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Effective implementation of the table-CI technique requires that the set of 
configurations be ordered such that species with the same number of open shells 
follow each other contiguously. The value of AK for each configuration pair is 
then known before the occupation numbers of two specific configurations are 
compared, and the loop structure of a program is organized in such a way that no 
pairs with AK>2 appear. Moreover, given a pair (ki,k2) of numbers of open shells 
(ki>k2)y the same genealogical and C ( * 2 > matrices and the same common 
Z-table(s) can be used for all configuration pairs belong to the class (ki,k2). 
Comparison of orbital occupancies of a specific configuration pair (Φι,Φ2) 
permits one to determine whether the configurations can interact or not. If 
configurations can interact, on the basis of the foregoing comparison, the values 
of R9 the molecular integrals Ij(R) and h(R% and the permutation Q{1) are 
specified and, hence, the beginning address of the required subtable within the Z-
table can be determined. By combining values of Z M and tM from the subtable 
with the value of /?, the desired block of Hamiltonian matrix elements over CSFs 
can be calculated using Eq. (14) and the algorithm described in Section II. It is 
clear that such an approach is most effective i f all required integrals are available 
in core storage. Otherwise, the less efficient three-step algorithm originally 
developed by Buenker (6) must be used. 

Analysis of AK=1 (ki=k2+2) Cases 

The (ΔΚ= 1,P=1) case is described by two main diagrams: 

are connected through double excitations. In the first diagram, c is empty in Φ 2 

but there are two additional possibilities depending whether a or b is empty. 
There are also three variants of the second diagram, depending on whether the 
orbital doubly occupied in Φ 2 is a, b or c. In all six diagrams, labeled in Table 
III with a parameter i?e[l,6], the total spin of the a, b, c orbitals in a main 
determinant D^^x m u s t be balanced by the spin of the d orbital in D^^i-

As a result, only six spin assignments Z^e [1,6] (ααβ/α,αβα/οί, etc.) for the four 
open-shells (abc/d) are possible but, again, there is only one determinant 

that can have nonzero interaction with a specific . Electron repulsion 

ΔΚ=1, P=l 

'1112' 
MOl/ 

\=abcd2/a2b2d and =abc/c2d (a<b<c). In both cases, configurations 
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Table ΠΙ. Electron repulsion integrals (I1J2) and linear coefficients (f\fi) 
for the (Δ£=1,Ρ=1) case 

R-
subcases 

Basis ZM=1 ZM=2 ZM =3 ZM=4 ZM=5 ZM=6 
Integrals ααβ/ αβα/ βαα/ αββ/ βαβ/ ββα/ 

χ (η\2\ (ac\bd), 
[22ΟΙJ (ad\bc) 

2 Ϊ\\\2Λ (ab\cd), 
(2021J (ad\cb) 

3 h m \ (ab\dc), 
1,0221J (ac\db) 

4 f1110S (ab\dc), 
UoOlJ (ac\db) 

5 ϊΐΙΙΟΛ (ab\cd), 
(02OI j (ad\cb) 

6hlW) (ac\bd), 
VOO21J (ad\bc) 

a a α β β β 

(1.-1) (0,1) (-1,0) (1,0) (0,-1) (-1,1) 

(0,-D (-1,1) (1,0) (-1,0) (1,-D (0,1) 

(0,1) (-1,0) (1,-D (-1,1) (1,0) (0,-1) 

(0,-1) (1,0) (-1,1) (1,-D (-1,0) (0,1) 

(0,1) (1,-D (-1,0) (1,0) (-1,1) (0,-1) 

(-1,1) (0,-D (1,0) (-1,0) (0,1) (1,-D 

NOTE: Since for any pair (i?,ZM) Ml-R,ZM)=f{(RJ-ZM)=-fiR,ZM) (i=l,2), it 
suffices to store only coefficients f\(R,ZM) for pairs (R,ZM) with R,ZM =1,2,3. 

integrals and linear coefficients for all 36 pairs (R,ZM) that are possible in the 
(AA=1,P=1) case are also given in Table III (N.B. A slightly different 
enumeration of /^-subcases and ZArspin assignments than that used by Buenker 
in Ref. (7) is used). As was the case for Table II, Table III was obtained for 
paradigmatic determinants in which the shells distinguishing the configurations 
are placed in the lowest positions. Let and Q(2) label permutations of the 
open shells (a, 6, and c in Φ! and d in Φ 2 ) among all such species in each 
configuration. Q(l) is specified by a set , , «f } / of the positions of the a, 

b, c orbitals in Φι, while β ( 2 ) is determined by the position nd

2) of the d orbital 

among all open shells in Φ 2 . Using the same technique as before, one obtains 

(F7
(1) \H\FJ2)) = w(0(1))w(g<2))X H#>C£> \fX{R,ZM )IX{R) + f2(R,ZM )I2(R)]> 

M=l 

where (15) 
w(Q}l>)= (_!)•* W , W(&2))= ( -1)"^, (16) 
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and tM is the number of the determinant Dm whose trajectory ρ is obtained 

from the trajectory PM of by removing three spins at positions 

(^ 1 } , n f \ n f } ) and adding the spin determined by ZM for the d orbital at position 

nm. 

In the (khAK=hP=l) case, the Z-table consists of 1 (&i-2) subtables, of ^)(Jt,-2 

associated with permutation pairs ( β ( 1 ) , β ( 2 ) ) . Each subtable consists of 2g\+l 
entries and has the same structure as in the AK-2 case. 

ΔΚ=], P=2 

In the case under consideration, only two diagrams are possible: 

( o ^ ) ^ 2 ^ ^ 2 ^ = 1 ^ a n d (20o)=^c/a2
 ^ = 2 ^ w h e r e b < c - S i n c e configurations 

are connected through double excitations, their determinants can interact only if 
the total spin for the b and c orbitals in is zero, and, hence, only two 
possible spin assignments, αβ (ZM=1) and βα (ZM=2), for these two orbitals in 
D$ are possible. A simple analysis shows that both diagrams have only one 
electron repulsion integral (ab\ac) associated and that the linear coefficient 
f{RfZM) for any pair (R,ZM) equals ( - i ) * + z * + 1 . As a result, by analogy with Eq. 
(14), one gets 

(F , ( 1 ) | J Ï |F 7

( 2 ) ) = (-1) Λ + ζ ' + 1Η<ί2 ( Ι ))(β*!ac)%W™C™ > (") 
M=l 

where the permutation Q ( 1 ) is determined by the positions (η^,η* 1* ) of the open 

shells b and c among all such species in Φι, 

wiQ^-lf^*, (18) 

and the trajectory Pt is obtained from PM by removing two spins at positions 

(5) In the (kuAK=l9P=2) case, the Z-table consists of subtables associated 
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with permutations and the structure of each subtable, consisting of 2^+1 
entries, is again the same as that in the ΔΚ=2 case. 

ΔΚ=1, P=3 

The (ΔΚ=1,Ρ=3) case is described by two diagrams: ^=ab/a2 (R=l) and 

^j=aZ?/&2 (/?=2), where a<b. Although, formally, the configurations are 

connected through one-electron excitations, their determinants can also be 
connected through double excitations. 

If a spin assignment for the a and b orbitals in is αβ (ZM=l) or βα 
(ZM=2), then their total zero spin is balanced in £> ( 2 ) by the closed shell a2 (if 

R=l) or b2 (if R=2). Such determinants will be connected through a single 
excitation, and the trajectory Pt , specifying Dj2K can be obtained from PM by 

removing two spins at the {n^\n{^) positions of the a and b orbitals among all 

k\ open shells in Φι. 
If a spin assignment for the two orbitals in is aa or ββ and the 

configurations have a common set of open shells {c}, then Z>^} can interact with 
several determinants Ζ)^ 2 ) 6Φ 2 through two electron excitations, abc=>a2c (if 

R=l) or abc=*b2c (if R=2), in the course of which one c orbital changes its spin. 

Given a pair (D^\c)f only two spin assignments, ααβ/α (ZM=3) or ββα/β 
(ZM=4), for the three orbitals abc/c in the pair D$lD™ are allowed, and the 

trajectory Pt specifying Dj2) is obtained from PM by removing two spins at 

positions (μ(*\η™ ) and inverting the spin of the c orbital. 

Using the same technique as before, in the R=l case, one gets 

(F/ 1>|//|Ff>) = w(ô<1>) ii-l)^W«>C<$ L + (oft I aa)- S™(ZM )] 

(ZM€[1,2]) 

(19) 

while, in the R=2 case, one has 
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(FV\H\F}2)) = W(Q(1)} Χ ί - l ) * - 1 W ^ C ; + (ab I bb) - S<£\ZM )] 

(Zjf€[l,2]) 

M 
(Z„e[3.4]) 

(20) 

Here, the permutation Q}1) is specified by the set («^°, ), Z M equals 1 (if 

ZM=2) or 2 (if Ztf=l), and 

httb = 

w ( ô u , ) = ( - l ) 

*.» + Σ [ 2 ( β * | ι Ό - ( « Ί * 0 ] + Y,(ab\cc) 
losed 

* Γ α ) = Σ(^Ι^)' 

$ Γ ( 2 ) = £ ( e c | * c ) -

com.closed 
shells{i) 

com.open 
shells{c) 

(21) 

(22) 

(23) 

(24) 

The first term in Eqs. (19) and (20) only involves summation over main 
determinants D$ in which spin assignment for the a and b orbitals is αβ (ZM=l) 
or βα (ZM=2). In the second term in these equations, the first sum involves 
determinants whose spin assignments for the a and b orbitals are aa (ZM=3) 
or ββ (ZM=4) and the second summation is only over those common open shell 
orbitals c that have a specific spin in Oft i f ZM=3, or a, i f ZM=4). The 
function S(^){\) involves summation over common c orbitals having spin a in 
D$ while the summation in S^° (2 ) is performed over common c orbitals with 
spin β in the determinant. 

In the (khAK=l,P=3) case, the Z-table consists of ^ ̂  J subtables associated 
with permutations Q(1). Each subtable involves w(g ( 1 )) and, for each main 
determinant DJ^K involves the value of Z M (ZM6[1,4]) and the following 

information. If ZMG[1,2], then the subtable includes: 1) the number of the 
determinant whose trajectory Pt is obtained from PM by removing two 

spins at the {na

l\n^) positions; 2) the set of (£(α)-1) locations ]B ] of the 
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common c orbitals having a spin in PM ; and 3) the set of (&(j3)-l) locations ^ j 

of the common orbitals with β spin in PM (n.b. this information is required for 

calculating Ηφ and ). If ZME [3,4], then, for each common c orbital having 

spin χ in PM (γ=β i f ZM=3 or a if ZM=4), the subtable includes the pair (tM ,nc ), 

where nc is the position of a specific spin-orbital c7 in P M and tM is the 

number of the trajectory that is obtained from PM by inverting the spin γ at 
position n · Thus, the total length of each subtable will be equal to 

cr 
( 1̂( 1̂+25+l)+l). 

Analysis of pairs of configurations with the same number of open shells 
(ki=k2=k) 

AK=0, P=l 

In the (ΔΑ=0, Ρ-I) case, there are three main diagrams: ĵ |̂ j=aM:u?, 
(\ 102̂  Γΐ122^ 
0211 N 1 ^ 2 ^ 2 ^ a™* 2211 = β ^ 2 ^ 2 / α 2 ^ 2 < : ^ ' where a<b and c<d. There are 

three additional variants of the second diagram, depending on what pair of 
orbitals (d/a, c/b or c/a) is doubly occupied in Φ1 /Φ2 . Table IV labels all six 
possible diagrams with a parameter Re [ 1,6] and shows six possible spin 
assignments ( Z ^ [ l , 6 ] ) for the four orbitals, ab/cd, in pairs D^lD™- In all 

diagrams, configurations are connected through double excitations. Electron 
repulsion integrals I\(R) and I2(R) and the linear coefficients fi(R,ZM) and 
f2(R,ZM% required for calculation of Hamiltonian matrix elements between 
paradigmatic determinants, are given in Table IV (which differs from the 
analogous table in Ref. (8) in details such as ordering). It is not difficult to 
realize that, if spin assignment for the a and b orbitals in is OLa or ββ, then 
there is only one determinant £> ( 2 ) , which interacts with , and whose 
trajectory pt^ is obtained from PM by removing the two spins at positions 
{η^,η™) and adding the same spins at the positions (μ12\η™)· But, i f spin 
assignment for the a and b orbitals in is αβ or βα> then there are two 
determinants, and £)<2 ), interacting with D$ » * n which spin assignments of 

the c and d orbitals are αβ and βα, respectively. The trajectories Pt^ and of 

such determinants are 
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Table IV. Electron repulsion integrals and linear coefficients ifiji) for the 
AJT=0,P=lcase 

R-
subcases 

Basis 
htegral 
(I1J2) 

ZM=J ZM=2 ZM=3 ZM=4 ZM—5 ZM—6 
aa/ αβ/ βα/ αβ/ βα/ ββ/ 
aa αβ αβ βα βα ββ 

(1,-D (1,0) (0,-D (0,-1) (1,0) (1,-1) 

(0,-D (1,-D (-1,0) (-1,0) (1,-1) (0,-1) 

(0,1) (1,0) (-1,1) (-1,1) (1,0) (0,1) 

(0,1) (1,0) (-1,1) (-1,1) (1,0) (0,1) 

(0,-1) (1,-D (-1,0) (-1,0) (1,-1) (0,-1) 

(1,-D (1,0) (0,-D (0,-1) (1,0) ( ΐ , - ΐ ) 

ι (ι 100' 
V 0 0 1 1 , 
(l\Q2\ 

[021lj 
(\W2\ 

[201lj 
Λ120̂  
[021lj 
(\\20\ 

(201lj 
6 [ 1 1 2 2 | 

2211 

(ac\bd), 
(ad\bc) 

(ab\dc), 
(ac\db) 

(ab\cd), 
(ad\cb) 

(ab\cd), 
(ad\cb) 

(ab\dc), 
(ac\db) 

(ac\bd), 
(ad\bc) 

NOTE: Since for any pair (R,ZM) /i(7-/?,ZM)=/i(/?,7-ZM)=/(^ZM) (i=l,2), it suffices to 
store only coefficients fî(R,ZM) for pairs (R,ZM) with R,ZM =1,2,3. 

obtained from PM by removing two spins (αβ or βα) at positions (η^,η^ ) and 

adding two spins (αβ for and βα forp ? , respectively) at positions 

ipf\nd

2)). If the coefficients for the pair D^/D™ are fi(R,ZM\ then the 

coefficients required for the pair D i i } / / ) i 2 ) will be /(i?,ZM+2). Taking into 

account that f^R,ZM)=MR,7-ZM) (see Table IV), one finally has 

(F ;
( 1 ) |//|F< 2 ) )=W((2 ( 1 ) )W(Ô ( 2 ) ) 

(25) 

M=l 

W<*> 
M=l 

(Zjf-2.3) 

Ç£> (/•(*,Z„)l,(R) + / 2 ( Λ , Z M ) J 2 ( t f ) ) 

+ Cg> ( / - ( J V - Z M ^ ( Λ ) + /2(/?,5-ZM)I2(R)\ 

where 
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W(QW)= , w(Ô ( 2 ) )= ( -1 ) Λ "^ 2 ) + 1 , (26) 

and permutations Q(L) and Q ( 2 ) are specified by the sets ( η ^ , η ^ ) and 

(nf \w* 2 ) ) . Note that the first sum in Eq. (25) only involves determinants in 

which spin assignment for the a and b orbitals is aa or ββ, and the second sum 
involves determinants with spin assignments αβ or βα. 

In the (k,AK=0,P=l) case, the Z-table consists of 2^ jj^J*1] S t ab le s 

associated with permutation pairs ( β ( 1 ) < β ( 2 ) ) . Each subtable consists of (3g+l) 
entries, namely w(Q(l))w(Q(2)) and, for each main determinant , the triple 
index (ZMJtMJM). 

AK=0, P=2 

(210\ 2 2 

In the (AK=0, P=2) case, there are two main diagrams: \=a bib c (R-\) 

(012Λ 2 2 
and \=bc /a c (R=2% describing configuration pairs connected through the 
double excitation a2=>bc (a<b<c). Only two spin assignments, a/a (ZM=1) and 
β/β (ZM=2), are possible for the open shells b/c in pairs I . The trajectory 
Pt of the only determinant interacting with a given is obtained from 
Ρ M by removing a spin at position nf } and adding the same spin at position ni2). 
In all four cases, interactions between paradigmatic determinants are described 
by the electron repulsion integrals (ab\ac) and the linear coefficient is always 
equal to -1. Taking these results into account, one gets 

(F/» \H\F™) = -w(QwMQm)(abIac)(±W£C<t» ' (27) 

where permutations and β* 2 ) label the positions n" } and n<2) of the b and c 
orbitals in the configurations, and 

H«2(,))= ( -1) 4 " + 1 . w((2<2))= ( - l ) " ^ 1 - (28) 
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In the (kyAK=0,P=2) case, the Z-table consists of subtables associated 

with permutation pairs (Q{ }<Q{)). Each subtable consists of (g+1) entries, 
namely w(Q(l))w(Q(2)) and, for each D$, the value of tM. 

ΔΚ=0, P=5 

The case under consideration is described by two diagrams: \=a/b (R=l) 

and " =ab2/a2b (R=2). This case is similar to the (AK=l,P=3) case discussed 

earlier. Again, although configurations are connected formally through single 
excitations, their determinants can additionally be connected through double 
excitations. 

β/β (ZM=2)), then the determinants will be connected through a single excitation 
and the trajectory ρ of Dj2) is obtained from PM by removing a spin at 

position na

l) and adding the same spin at the position ni2). 

β/α (ZM=4)) and the configurations have a common set {c} of open shells, then 
the determinants will be connected through a double excitation (a^^b^Ca (if 
ZA/=3) or afia=>bc£fi (if ZM=4)), in the course of which one common c orbital 
changes its spin. In this case, the trajectory ρ specifying Df® is obtained from 

Ρ M by removing a spin at position na

l), adding the opposite spin at position . 

and inverting the spin of a c orbital. 
Again using Slater's rules, in the R=l case, one gets 

If spins of the alb orbitals in the pair Dff I D, ( 2 ) are the same (a/a (ZM=1) or 

If spins of the orbitals a/b in the pair D$ I a r e different (α/β (ZM=3) or 

M=l 
(Z«e[l,2]) 

(29) 

(ZM6[3,4J) 

while, in the R=2 case, one has 
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( F / 1 ) | i / | F , ( 2 ) ) = -vKÔ ( 1 ))^v(Ô ( 2 ,) 

M=l 
(Z êlUj) 

(Z*c[3.4j) 

(30) 

Here, permutation β α ) and Q(2) are determined by the positions and n<2 ), 

ZM equals 1 (if ZM=2) or 2 (if ZM=1), 

w ( Ô ( 1 ) ) = ( - l ) ^ l , + 1 , w ( Ô ( 2 ) ) = ( - l ) ^ , + 1 , (31) 

and hab and S $ ° ( Z ) are defined by Eqs. (22)-(24). The first term in Eqs. (29) 

and (30) involves summation over all main determinants - S^\ZM ) in Eq. 

(29) involves those common orbitals c which have the same spin in D$ as does 

orbital a, while S ^ ° ( Z M ) in Eq. (30) involves the common orbitals whose spin 

is opposite to that of the a orbital in . The second term in Eqs. (29) and (30) 

involves main determinants D$ in which the spin of the c orbitals is opposite to 

that of the orbital a. 

In the (k,AK=Q,P=3) case, the Z-table consists of * j subtables associated 

with separate pairs (Q(l)<Q(2)) of permutations specifying the positions nf and 

n<2 ). Each subtable consists of (2&g+l) entries, namely w(Q(1))w(Qi2)% and, for 

each main determinant D{$ » the subtable includes 3 pieces of information: 1) the 

spin y of the electron at position in D{$ and the number of the determinant 

whose trajectory is obtained from PM by removing the spin γ at position 

and adding the same spin at position n^ 2 ) ; 2) the positions nc of the 

common orbitals with spin γ in ; and 3) the positions nc_ of the common 

orbitals with spin opposite to 71η . The information in (3) is paired with the 

number, tM, of the determinant, D^K with trajectory Pt^ that is obtained from 

Ρ M by removing spin 7 at position adding the opposite spin 7 at position 
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n{

b

2), and inverting the spin at position n . To facilitate storage and indexing, 

the information in (2) is paired with unused values. 

The case of the same configuration 

In the case when the configurations are the same (Φ 1 =Φ 2 =Φ), it suffices to 
consider only the lower triangle of the required Hamiltonian matrix block. On 
the basis of Eq. (8), one has 

Ci W>) = twM(D* \H\DM) + ±W^fcf(Du |#|£>,)' 
M=J M=l ΐ(ΦΜ) 

l<J<I<g9 (32) 

where the first and second terms involve diagonal and off-diagonal determinantal 
matrix elements, respectively. In the last equation, it has been taken into account 
that, when using genealogical CSFs, the block IJĈ jj is lower triangular. The 

diagonal matrix elements can be written in the form (8) 

open 

{DM\H\DM)=iam- Σ Σ*-* 
γ=α,β ay<by 

(a7,b7€DM) 
where the first term 

closed closed °?ei}( closed 

/„(*)= Σ (2A«+•/„)+ Σ -2Κ,)+ς\ κ + 2(2J>a 
i i<i a \ i 

depends only on the configuration and is common for all DMt and the second 
term involves summation over all pairs of open-shell spin-orbitals a r<d y()ta,^) 
occupied in a given determinant DM (N.B. Jia and Kia are Coulomb and exchange 
integrals). 

Since all determinants, created by the same configuration, with a given S^are 
related by double and higher excitations (8), determinants DM and Dt can interact 
only if exactly two open-shell orbitals a and b of opposite spin in DM have 
inverse spins in Dt. Taking into account that the Hamiltonian matrix element 
between such determinants is -K^ on the basis of Eqs. (6), (32) and (33), one 
has 

(33) 

(34) 
\ open 

J a<b 
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γ=α,β θγ<άγ Μ=\ αγ<άδ{γ*δ) 

(35) 

(aYJbYeDM) {arJbs*DM) 

where, in contrast to the second term, the third term involves summation over all 
pairs of open-shell spin-orbitals ay<bs whose spins are opposite (γ*δ) in a given 
determinant DM. 

For each main determinant DM, the Z-table involves 1) the sets 
{ ι ? , π ® a ) ) } a n d faf,nf\...9nfm}, specifying locations of open shells 

electrons in DM with a- and j3-spins, respectively, and 2) the set of triple indices 
in^\n(J\t{^]\k^)km determining locations (nf <nf) of pairs of open shell 
electrons with opposite spins in DM and the number f£} of the determinant, 
interacting with DM, whose trajectory is obtained from PM by flipping two spins 
at the positions (nf <nf). Since the numbers k(a) and k(fi) of a- and β-

electrons in DM are equal to fc/2+S and kl2-S> respectively, the total dimension of 
the Z-table required for calculation of all Hamiltonian matrix elements over 
CSFs of the same configuration is equal to g[k+3(k2/4-S2)]. 

Concluding remarks 

Formulas for Hamiltonian matrix elements in a spin-adapted basis have been 
obtained in the framework of the table-CI method. In particular, intermediate 
transformations of the Hamiltonian matrix from the determinant basis to a basis 
of CSFs are eliminated. Furthermore, the genealogical scheme of constructing 
CSFs is shown to produce efficient formulas. 

The formulas presented herein have been implemented and numerically 
tested in a program realizing second-order generalized Van Vleck perturbation 
theory (GVVPT2) [see, e.g., Ref. (76)]. Preliminary results support the assertion 
that the method of constructing Hamiltonian matrix elements is highly efficient. 
Computational details of implementation in the context of G V V P T 2 and other 
specific methods of molecular electronic structure theory will be considered in 
separate publications. 

Finally, we note that the formulas discussed in this paper are compatible 
with our so-called macroconfiguration concept, which has been realized recently 
(77). Specifically, the need for explicit storage of highly excited configurations 
is eliminated and, at the same time, a vast number of noninteracting Hamiltonian 
matrix elements are prescreened. This development is critical to our recently 
presented MR-CISD(TQ) method (18). 
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Chapter 9 

Jacob's Ladder for Time-Dependent 
Density-Functional Theory: Some Rungs 

on the Way to Photochemical Heaven 

M a r k E. Casida 

Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité (LEDSS), 
Université Joseph Fourier (Grenoble I), 38041 Grenoble, France 

(email: Mark.CASIDA@ujf-grenoble.fr) 

Abstract 

The time-dependent extension of density-functional theory 
(TDDFT) provides a rigorous formalism allowing the treatment 
of electronic excitations and excited states. However, just as 
in traditional (ground-state) density-functional theory (DFT), 
the quality of the results depends upon the approximation used 
for the unknown exchange-correlation (xc) functional. Perdew 
and Schmidt have described the various functionals developed 
for ground state D F T in terms of a Jacob's ladder, where the 
rungs correspond to successive levels of approximation of the xc
-functional[1]. Within the adiabatic approximation, these func
tionals can also be used in T D D F T . However, T D D F T places 
additional demands on the functional that are not typically sat
isfied by approximations developed for the ground-state. The 
simple time-dependent local approximation already gives re
markably good results for many excited states. However other 
excitations require more accurate treatment of the xc poten
tial. Our work on this problem will be summarized in terms 
of a "Jacob's ladder" adopted to the special needs of applied 
T D D F T . 

© 2002 American Chemical Society 199 
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Long accepted as an important fundamental theoretical tool in solid 
state physics, density-functional theory (DFT) has now also come to be 
accepted as an important fundamental tool in the quantum chemistry com
munity. The 1998 Nobel Prize in Chemistry awarded "to Walter Kohn for 
his development of the density-functional theory and to John Pople for his 
development of computational methods in quantum chemistry" certainly 
emphasized this acceptance [2]. In comparison with ab initio methods, 
D F T has the important advantage that it includes electron-correlation ef
fects in a simple Hartree-Fock (or Hartree-like) manner. When suitably 
programmed, this allows D F T to be applied to larger molecules, and hence 
to more molecules of practical importance, than is the case with traditional 
ab initio methods. It is also simple enough for on-the-fly calculation of 
forces needed in so-called ab initio molecular dynamics methods (most of 
which are based on DFT) , such as that of Car and Parrineilo [3]. Neverthe
less, with all its advantages, traditional Hohenberg-Kohn-Sham D F T [4, 5] 
was born an incomplete theory, limited to calculating the energy and charge 
density for the static ground electronic stationary state. Here I review the 
time-dependent generalization of D F T , and particularly how different levels 
of sophistication of functionals can be important for time-dependent D F T 
(TDDFT) calculations of electronic excited state potential energy surfaces. 

To the extent that we can solve the "problem of the unknown func
tional" in T D D F T , we can look forward to an ever widening list of appli
cations. Since our formulation [6] and implementation [7] of T D D F T in a 
manner suitable for molecular applications, some form of T D D F T has been 
implemented in nearly every major quantum chemistry program. Most 
applications have been to the calculation of electronic excitation energies 
and spectra, including for chlorophyll a [8], fullerenes [9], polyacetylenes 
[10, 11, 12, 13], transition metal coordination compounds [14, 15, 16], and 
phototoxic drugs [17]. Nevertheless there have now been several calculations 
of potential energy surfaces [18,19, 20, 21, 22, 23] and the implementation 
of analytic derivatives for T D D F T [24, 25] has allowed automatic geometry 
optimizations to be carried out for excited states. These developments make 
me optimistic that we will soon see some type of Car-Parrineilo treatment of 
a photodynamics problem. Certainly first attempts are already being made 
in this direction. These include Car-Parrinello for a single excited state us
ing the multiplet sum formalism [26] and implementation of T D D F T to take 
into account finite temperature vibrational structure for excitation spectra 
in Car-Parrinello codes [27]. Very recent work of relevance to this problem 
is also being carried out in the Rôthlisberger group [28]. 

In the remainder of this chapter, I first review the status of the treatment 
of excited states in D F T and then go into a detailed analysis of where and 
how functionals can be improved. 
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E X C I T E D STATES IN D F T 
Tradi t ional D F T is based upon two theorems due to Hohenberg and 

Kohn [4]: (1) For a nondegenerate system of electrons in its ground sta
tionary state the charge density determines the external potential up to an 
arbitrary additive constant. (2) In principle, the ground state energy and 
charge density may be obtained by minimizing a certain functional E[p] 
(for which a practical exact form is unfortunately not known.) I have de
liberately emphasized the references to "ground" and "stationary state." 
Before seeing how we can generalize the traditional theory to get around 
these limitations, it is useful to review the status of "ordinary" D F T . 

In practice, the Kohn-Sham formulation [5] of D F T is almost always 
used. This overcomes the major difficulty with finding a density-functional 
for the kinetic energy by introducing a set of orthonormal auxiliary func
tions (i.e. the Kohn-Sham orbitals), ψ* with occupation numbers /*, which 
sum to the ground state density, 

p(r) = Ç/M(r)| a, (1) 
i 

and allow us to express the ground state energy as 

>(r)p(r') 
Ε = Σ ZiW-il/WelVi) + \J f drdr' + Exc[p]. (2) 

These orbitals are to be found by minimizing the energy subject to the 
orthonormaJity constraint. The result is the Kohn-Sham equation, 

~ | v 2 + vext(r) + j ^fL dr' + Vxc(T) ^(r) = e ^ ( r ) . (3) 

Since no practical exact form of the exchange-correlation functional 

Exc\p] = J exc[p)(r)p(r)dr (4) 

is known, it is approximated in practice. There are several levels of sophisti
cation that can be used for constructing approximate functionals. Recently, 
Perdew and Schmidt[l] have organized the different families of density func
tionals into a "Jacob's ladder of density functional approximations." A 
generalization of this ladder is given in Fig. 1. The lowest level represents 
the simplest approximation which is the local density approximation (LDA) 
in which the exchange-correlation energy density is approximated by that 
of the homogeneous electron gas (HEG), 

e*c[p](r)=efc

EG(p(r)). (5) 
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This works remarkably well, especially for properties such as ionization po
tentials and molecular geometries of "ordinary" molecules. It is normally 
used in its spin-dependent form (the local spin density approximation), but 
for simplicity I will neglect spin except where it is explicitly necessary to 
include it. Unfortunately the L D A tends to overbind. The next level of 
approximation are the generalized gradient approximations (GGAs) which 
include an explicit dependence on the reduced gradient of the charge den
sity, x(r) = I Vp(r ) | /p 4 / 3 ( r ) . Well-constructed G G A s are able to give signif
icantly better chemical binding energies. The third level of approximation 
is the meta-G G As which include a dependence on the kinetic energy den
sity, r(r) •= Σ% Μ W i ( r | 2 - Older and more explored is the fourth level of 
the ladder (labelled O E P x here) in which some explicit dependence on oc
cupied orbitals is included, typically through some portion of Hartree-Fock 
exchange. This inclusion of an orbital dependence in the density-functional 
may seem a little strange, until it is recalled that the orbitals themselves are 
implicit functionals of the charge density. These hybrid functionals were 
introduced because they are able to give near chemical accuracy for thermo
chemistry — something which GGAs alone were unable to do. The highest 
level of the ladder (OEPxc) includes also a dependence on the unoccupied 
orbitals. At this level, we have enough degrees of freedom to construct 
"exact" exchange-correlation potentials from ab initio theory, giving rise 
to the term "ab initio density-functional theory" [29]. Work at this level 
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is only just beginning. The reader is referred to the book by Koch and 
Holthausen for a property-by-property assessment of the accuracy of many 
popular functionals [30]. 

In thinking about the impact of a particular choice of functional on any 
given property, it is important to realize that the historical emphasis in 
creating approximate density-functionals has been to obtain accurate total 
energies. Hence most work has concentrated on understanding and approx
imating the exchange-correlation energy, Exc[p}. As we go to higher and 
higher functional derivatives of the exchange-correlation energy, less and 
less is known about their exact properties and how to approximate them. 
Since the exchange-correlation potential, vxc[p](*) = i&cc[p]/£p( r)> enters 
into the orbital equation, it has a direct effect effect on the charge density. It 
also enters into the calculation of analytic first-derivatives used in automatic 
geometry optimizations. These are important properties and more and 
more effort is being made to find better approximations for the exchange-
correlation potential [31, 32, 33, 18, 34, 35, 33, 36, 37]. The second deriva
tive is the exchange-correlation kernel, /xC[p] (*>**') = δ2ΕΧ0\ρ]/δρ(τ)δρ(τ'). 
It is needed for the calculation of static response properties such as elec
tronic dipole polarizabilities and for the calculation of analytic second-
derivatives. We can, of course, go on taking derivatives, but this is high 
enough for present purposes. 

E x c i t e d States. It is interesting to note that the first Hohenberg-Kohn 
theorem implies that the ground state charge density, by determining the 
external potential up to an additive constant, also implicitly determines the 
entire manifold of electronic ground and excited states up to an arbitrary 
energy zero. The problem has been how to find a practical approximate 
scheme for treating excited states based on either (or both) the ground 
and excited state charge densities. Several methods have been proposed 
for doing this (see Ref. [21] for a recent review.) Practical calculations 
typically use one of two approaches: either (i) the D F T A S C F approach 
or (ii) T D D F T . Both approaches have advantages and disadvantages and 
until the two are united into a single formalism, we must learn to pick and 
choose depending upon our application. 

The A S C F approach is historically the older of the two approaches. It 
is based on the idea that D F T should be valid for the lowest state of each 
symmetry (especially if the state is well described by a single-determinantal 
wave function!) If this is true, it suffices to take the energy difference of 
two SCF calculations with different orbital occupancies. This approach is 
formally exact for the first ionization potential of a molecule (but is often 
also useful for other ionization potentials). It is also exact for the lowest 
excited state of a given symmetry (and it is very commonly applied in this 
form to calculate the lowest triplet state of a closed-shell molecule). In 
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more complicated situations, afficianados of the A S C F approach use the 
Ziegler-Rauk-Baerends multiplet sum method[38, 39] to estimate energies 
for excited states. In this variation on the A S C F method, first-order en
ergies of multi-determinantal states are estimated by a weighted sum of 
the energies of single-determinantal states based upon a group theoretical 
guess of the form of the multi-determinantal wave function. In the case of 
a singlet one-electron excited state of a closed-shell molecule, 

Ringlet s _ β ^ _ (6) 

The strength of the A S C F approach is that it can handle two-electron and 
higher-electron excited states easily. The weakness of A S C F lies in its lack 
of formal justification (except for particular special situations, such as the 
first ionization potential), and in its inability to handle nontrivial configu
ration mixing, such as would be encountered, say, near avoided crossings of 
two excited states. 

Time-dependent density-functional theory operates very differ
ently. Although T D D F T was initially viewed as an ad hoc method, a 
substantial body of work has now given it a rigorous formal footing [40, 
41, 42, 43, 44, 45, 46, 47, 48] (see especially reviews by Gross and co
workers [49, 50, 51].) In analogy with experiment, T D D F T excitation ener
gies are determined by finding the resonant frequencies for the response of 
the charge density to a time-dependent electric field (think photon!). The 
strength of T D D F T is that it is formally well-founded (though there is an 
unknown functional) and configuration mixing in excited states emerges as 
a natural consequence of the formalism. The weakness of T D D F T in prac
tice is in the functionals and in the adiabatic approximation which restricts 
it to one-electron excitations. Practical calculations solve the equation, 

A Β 
Β A 

where 

Biaajbr — Kiaatbjr > (9) 

and the "coupling matrix," 

x ^JT(^br(Tf)drdr'. (10) 
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Thus the excitation energy, CJ/, depends upon both the exchange-correlation 
potential through the orbitals, ψΐσ, and orbital energies, 6ίσ, and on the 
exchange-correlation kernel, / ^ r ( r , r ' ) . 

Had the adiabatic approximation not been made, then the exchange-
correlation kernel would also have a frequency dependence, /scr(r,r';t<;). 
The adiabatic approximation assumes that the exchange-correlation poten
tial, i £ c ( r , t), reacts instantly to any temporal change in the charge density. 
The exact theory includes "memory effects" whereby the response of the 
potential at time t depends not only on the charge density at time t but 
also on the charge density at previous times. In principle the adiabatic ap
proximation is valid only in the low frequency (i.e. low energy = %ω) limit. 
In practice, the limit of validity of the adiabatic approximation can only 
be determined through explicit calculation and comparison with reliable 
experimental and theoretical results. 

Jacob's Jungle G y m . Potential energy surfaces can be calculated by 
adding the excitation energies from T D D F T directly to the total ground 
state energy obtained from traditional D F T . This transforms the prob
lem of Jacob's ladder into that of Jacob's jungle gym (Fig. 1) because we 
can expect to need reasonably high-quality approximations for both the 
exchange-correlation energy and for its functional derivatives. In particu
lar, the ground state energy depends heavily on the approximation for Exc 

and also to some extent on the quality of the first functional derivative, vxc. 
The excitation energy, ωι depends on vxc and also on fxc. 

Nevertheless, we can do surprisingly well on the lowest level of the jungle 
gym, which is known as either the time-dependent local density approxi
mation (TDLDA) or as the adiabatic local density approximation (ALDA). 
Experience has shown that one should expect excitation energies which are 
better than those given by the time-dependent Hartree-Fock (TDHF) ap
proximation or by configuration interaction singles (CIS) for comparable 
or less effort provided, (i) excitations are vertical and at the ground state 
equilibrium geometry, (ii) only excitation energies are considered which are 
below the T D D F T ionization threshold at minus the H O M O orbital energy, 
and (iii) there is not too much change in the charge densities before and 
after the excitation process. T D L D A results for N2 are given in Table 1. 

L A D D E R - B Y - L A D D E R ANALYSIS 
In this section I will show several instances where it is necessary to 

mount the various ladders in Jacob's jungle gym, beginning with the Exc 

ladder and continuing on to the fxc ladder. 
Problems w i t h Exc. Since T D D F T is based on the response of the 
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Table 1: Data are from Réf. [7]. 

N 2 Vertical Excitation Energies (eV) 
State T D L D A Expt T D H F CIS 

Singlet ->· Singlet Transitions 
wlAu 10.22 10.27 8.75 9.09 
a'1 Σ- 9.66 9.92 7.94 8.51 
a x n f f 9.10 9.31 9.76 9.60 

Singlet Triplet Transitions 
C 3 I I U 10.36 11.19 11.26 11.85 
Β,3Σ>Ζ 9.66 
Wz&u 8.83 

9.67 7.94 8.51 Β,3Σ>Ζ 9.66 
Wz&u 8.83 8.88 5.80 7.35 
B3Ug 7.60 8.04 7.62 7.94 
Α 3 Σ + 7.88 7.75 3.47 6.25 

Average Error for A l l Eight States 
0.25 1.69 1.02 

ground state, it fails when the description of the ground state fails. A classic 
example of such a failure is the D F T description of the ground states of 
biradicals. This problem is illustrated for the simple hydrogen molecule 
in Fig. 2. A similar problem is encountered for rotating around a double 
bond. 

Figure 2 can be understood beginning from an analysis of symmetry 
breaking in the groundstate [52]. The stability of the Kohn-Sham wave 
function with respect to symmetry-breaking can be tested by considering 
an arbitrary unitary transformation of the orbitals, 

^ ( r ) = e i A ( H + i / ) ^ r ( r ) 5 ( n ) 

where R and I are real operators. After a fair amount of algebra, one 
arrives at the energy expression, 

Ex = E0 + λ 2 [ # ( A - B)R + f*(A + B ) l ] 4- 0(XZ), (12) 

where matrix elements of the R and I operators have been arranged in col
umn vectors and the 0{\) term disappears because the energy has already 
been minimized before considering symmetry-breaking. The presence of the 
terms ( A ± B ) shows the connection with the pseudoeigenvalue problem (7). 
In fact, Eq. (7) can be rewritten as the eigenvalue equation 

( A + B ) ( A - B ) Z J = C J ? Z / . (13) 
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H 2 triplets 

10 

5 

-5 

-10 

3 T D D F T 
4 lin ASCF 

ι \ \ STDDFT+TDA 
6 exact 

I Vn \ \ 7ASCF 
BTDDFT+TDA+CTC 

I V 
V \ 

1 DFT 

1 
2 exact 

(a) Ground and triplet excited state surfaces. 

H 2 singlets 

15 

X 

-5 

3 lin A S C F 
. 4 À S C F 

5 exact 

7 

•-^6 

6 T D D F T 

7 TDDFT+TDA 

aTDDFT+TDA+CTC 

\ 
s 

3 

1 

1 D F T 
2 exact 

~ Ο 1 2 3 
(b) R W A 

(b) Ground and singlet excited state surfaces. 

Figure 2: H2 ground and excited state surfaces. Adapted from Ref. [22]. 
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Assuming that the aufbau principle is obeyed, the matrix (A — B ) is always 
positive definite. However (A + B ) may have negative eigenvalues. In that 
case, the energy E\ will fall below EQ for some value of J . At the same 
time, this will correspond to a negative value of ω] (i.e. an imaginary value 
of ωj.) This is exactly what happens in Fig. 2. At the bond distance 
given by the vertical line, the Kohn-Sham energy can be further lowered by 
allowing for different orbitals with different spin, though these orbitals no 
longer belong to proper representations of the molecular symmetry group. 
This is a disaster for calculating excited state surfaces because the triplet 
excitation energy falls to zero and then becomes imaginary. We might have 
hoped that the excitation energy would remain reasonable until fairly close 
to the symmetry breaking point, however Fig. 2 shows that we actually 
have a problem significantly before symmetry breaking occurs. (A stability 
analysis for the Kohn-Sham equation was also carried out by Bauernschmitt 
and Ahlrichs [53], but no connection was made with T D D F T excitation 
energies.) 

In the absence of the exact exchange-correlation functional, the ulti
mate solution to the symmetry-breaking problem is probably some sort of 
multi-determinantal generalization of D F T for the groundstate. However it 
is interesting to note that the A S C F approach is in principle valid for the 
lowest triplet state of H2 and the excitation energy curve is in fact quite 
reasonable. So one way to try to improve the T D D F T excitation energy 
curves is to try to incorporate some features of the A S C F approach. We 
have done this in Ref. [22]. We find that, loosely speaking, 90% of the 
solution to this problem comes from using the Tamm-Dancoff approxima
tion (TDA) which consists of setting Β = 0. The resultant equation for 
excitation energies, 

Α Χ / = ω ι Χ / , (14) 

decouples the excitation energy problem from the problem of the stability 
of the ground state wave function. Results for H2 are shown in Fig. 2. A 
second part of the solution is a charge transfer correction (CTC) [22], 

As shown in Fig. 2, the T D D F T + T D A + C T C triplet curve is virtually 
identical to the A S C F triplet curve. In the singlet case, the A S C F method is 
hard to justify and indeed the excited singlet curve seems to be dissociating 
to the wrong limit, while the T D D F T + T D A + C T C singlet curve is at least 
qualitatively correct. 

Problems w i t h vxc. Consider now just vertical excitation energies near 
the equilibrium ground state geometry. It can be shown that the T D D F T 
ionization threshold is at -enoMO [54]. As illustrated in Table 2, this 
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Table 2: Data are from Refs. [54] and [36]. 

Ionization Potential (eV) 
Molecule -LDA 

~eHOMO 
AC-LDA 

~tHOMO A S C F Expt 
N 2 10.36 15.36 15.62 15.60 
CO 9.10 13.78 14.10 14.01 
C H 2 0 6.32 10.85 10.92 10.88 
C2H4 6.91 11.01 10.94 10.68 

threshold is too low. The reason is known and is because the asymptotic 
behavior of vxc for nearly all common functionals falls off too quickly, lead
ing to under binding. Unless this is corrected, T D D F T excitation energies 
calculated with an extended basis set will show variational collapse. As in 
Fig. 3, T D L D A excitation energies above -€#ΟΜΟ collapse because we are 
trying to describe with a finite basis set a continuum which has set in too 
early. A very simple correction of the asymptotic behavior of the potential 
is, 

t ^ - L D A ( r ) = ^ A ( r ) 

- m i n ( I P A S C F + eHOMoM* χ + ) , ( « 0 

where χσ is the reduced gradient defined earlier. (Since the correction is just 
a rigid shift of the potential except at large r, the density and total energy 
remain largely unaffected.) The resultant ionization potentials are shown in 
Table 2. Figure 3 shows that this does indeed fix the problem of variational 
collapse. Since this allows us to treat higher excited states such as Rydberg 
states, it also allows us to treat avoided crossings between valence-type and 
Rydberg-type excitations, such as those in the ιΑχ manifold of C H 2 O [18]. 

Ethylene is an important molecule for photochemistry, so it is impor
tant to describe its excited states as well as possible. While correcting the 
asymptotic behavior of vxc helps immensely in the T D D F T description of 
higher π excited states, we have noticed that certain excitations out of the 
σ manifold of orbitals are too low in T D D F T [54]. This is particularly 
problematic because these σ excitations mix artifactually with the π exci
tations around 8 eV to give a false picture of the nature of the excited states 
(Fig. 4). We have traced this back to problems with the relative energies 
of the occupied a and π orbitals[36], by using the fact that the T D A is of
ten a good approximation near the ground state equilibrium geometry and 
that relaxation is often relatively small in D F T . This latter point makes 
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9 α TDLDA/AC-LDA 

1 b3u(7c> EXCITATION ENERGIES (eV) 
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Figure 3: Variational collapse of ethylene π excitation energies of above the 
T D L D A ionization threshold at - C ^ O M O - F r o m Ref- [36]. 

Figure 4: Comparison of all one-electron excitation energies of C2H4 with 
those from good ab initio calculations. 
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Table 3: C 2 H 4

 1 , 3 ^ Ι 5 [ 1 ^ 3 5 ( ^ Η 2 ) ' 1 6 2 5 ( Π *)] Excitation Energies (eV). Data 
from Refs. [36] and [55]. 

Method UJS Ae 
T D L D A / L B 9 4 6.59 7.08 6.83 
T D L D A / A C - L D A 6.70 7.16 6.92 
T D L D A / L D A 6.93 6.98 7.19 
A S C F / L D A 7.13 7.19 7.52 
T D L D A / O E P x 8.1 8.46 8.34 
Expt 9.2 
T D H F 9.22 
CIS 8.56 9.28 
CIS-MP2 8.96 9.31 

D F T very different than Hartree-Fock. It is well-known that Hartree-Fock 
orbitals are ill-adapted for describing the excitation process because the 
unoccupied orbitals see one more electron than do the occupied orbitals. 
In contrast, D F T orbitals are much better adapted to describing the exci
tation process because the occupied and unoccupied orbitals see the same 
potential. Thus, as long as the charge density remains roughly the same for 
the initial and final states and we are not near an avoided crossing where 
there are nontrivial configuration mixing effects, the excitation can be de
scribed in terms of a simple two-level model (2LM) as a single promotion 
Φι Φα pins singlet and triplet spin coupling. Within the 2LM+TDA, it 
can be shown that, 

ωτ < Ae < (17) 

and the singlet-triplet splitting gets smaller as we go to Rydberg states [36]. 
This and Table 3 allow us to see that the problem in ethylene with T D D F T 
excitations out of the σ system of ethylene lies at the orbital energy level, at 
least in the case of the lhg(^cH2) Ihgin*) excitation (the lhg(w'CH2) 
looks like an in-plane π*-like arrangement of C H sigma bonds.) In par
ticular, with the L D A , LB94, and A C - L D A functional, the simple orbital 
energy difference lies significantly lower than the expected triplet excitation 
energy around 8.5 eV. 

This indicates that vxc is not only incorrect in the large r region, but is 
also subtly incorrect in regions of space important for occupied orbitals. In 
order to solve this problem, it suffices to calculate a more accurate potential. 
According to Kohn and Sham[5], the exact exchange-correlation potential 
is simply that which satisfies the condition that the difference of the charge 
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densities is zero: 

0 = Δρ ί (Γ) = ρ Γ ί ( ' ) - Α Τ η ( ' ) · (18) 

This is almost the same in the exchange-only case as the optimized effective 
potential which is defined by requiring that the linear response of the charge 
density is zero, 

0 = δρσ(τ) = / / (E;[7DFT](r;r') - t£(r)i(r - r')) ihrrV**) drdr', 

where Σ£ is the H F exchange potential. Equivalently v% is the multiplica
tive potential whose orbitals minimize the H F energy expression [56, 57]. 
We have programmed and carried out exchange-only O E P calculations for 
molecules within a resolution-of-the-identity methodology, without use of 
4-center integrals [55]. To be fair, these calculations entail numerous subtle 
numerical difficulties [55, 58], but we are reasonably confident about the 
quality of the results presented here. Figures 5 and 6 show what happens 
to the orbital energies in C2H4. In both cases, the simple A C - L D A gives 
orbital energies in reasonably good agreement with our OEP calculations. 
However the small relative differences for the σ and π orbitals are important, 
bringing the OEP orbital energy difference in Table 3 much more in-line 
with the expected value. Figure 4 shows that although our T D L D A / O E P x 
calculations have neglected correlation in vxc (though not in fxc) we are, 
as hoped, able to clean up the structure of the excited states around 8 eV. 

Problems w i t h fxc. As mentioned earlier, the adiabatic approxima
tion is a low frequency (low energy) approximation. It is thus natural to 
ask how and where the frequency dependence of fxc should become impor
tant. Two rather different types of frequency dependence are important 
in this context [59]. The first type (dispersion) consists of a continuous 
variation of fxc(^) as a function of ω, and will result in shifted excitation 
energies. The second type (pole structure) consists of the probable pres
ence of singularities in fmc(^) at particular values of ω. This pole structure 
is associated with the appearance of additional satellite peaks in the elec
tronic absorption spectra, due to mixing of many-electron with one-electron 
excitations. 

The development of useful exchange-correlation kernels which go beyond 
the adiabatic approximation has been a slow process, but a recent applica
tion of one such kernel to semiconductors is encouraging [60]. I will give a 
brief overview of some of the principal work leading up to this recent ap
plication. The first attempt at a frequency-dependent exchange-correlation 
kernel was given by Gross and Kohn [61]. Almost a decade later, Dobson 
proved the harmonic potential theorem (HPT) which must be obeyed by 

(19) 
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-20 -10 
RI-OEP orbital energies (eV) 

Figure 5: Correlation graph between various exchange, exchange-
correlation methods, and OEP for C2H4: all 6 occupied valence orbitals. 
From Ref. [55]. 

-3 -2 -1 
RI-OEP orbital energies (eV) 

Figure 6: Correlation graph between various x-only method and OEP for 
C2H4: 10 unoccupied orbitals. From Ref. [55] 
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any admissible fxc(u) [62]. He showed that the adiabatic approximation 
satisfies the H P T but that the suggestion of Gross and Kohn does not. 
Vignale gave a general condition guaranteeing that exchange-correlation 
functionals obey the H P T [63]. Vignale and Kohn [64] showed that the 
exchange-correlation potential in T D D F T is an intrinsically nonlocal func
tional of the charge density which does not admit a gradient expansion, 
unless the theory is reformulated to also include a dependence on the cur
rent density, J = (l/2t) ^ / < ( ^ J V ^ < + ^ W * ) . They gave an explicit 
form for the exchange-correlation functional in the case of a perturbation 
of the homogeneous electron gas which is slowly varying on the scales of 
kp1 (~ interelectron distance) and VF/OJ (~ distance traveled by an elec
tron during a period of the perturbing field.) Vignale, Ullrich, and Conti 
reformulated the Vignale-Kohn theory in terms of the exchange-correlation 
viscoelastic stress tensor [65]. Dobson, Bvinner, and Gross have presented 
a generalization of the Vignale-Kohn theory [66]. In order to apply these 
theories, one must also know the frequency dependence of fxc{u) for the 
homogeneous electron gas. This has been studied by Nifosi, Conti, and 
Tosi [67]. The exchange-correlation kernel for the homogeneous electron 
gas is a relatively flat function of frequency at low frequency, varies more 
rapidly as the plasmon frequency is approached, and has a sharp mininum 
at twice the plasmon frequency where two plasmon excitations become 
possible. Such a minimum is a typical sign of residual pole structure when 
going from a discrete bound state problem to a continuum problem such 
as the homogeneous electron gas. However this particular feature is not 
especially relevant for the Vignale-Kohn-Ullrich-Conti theory which is for 
slowly varying perturbations. The problem addressed by de Boeij, Koot-
stra, Berger, van Leeuwen, and Snijders [60] was to include the macro
scopic exchange-correlation electric field in calculations of semiconductor 
excitation spectra. This is a nontriviai highly nonlocal contribution to the 
exchange-correlation functional associated with the development of surface 
charges and changes in the reaction field due to these charges when a po-
larizable solid is placed in an electric field, de Boeij et al. show how to 
derive an expression for the macroscopic exchange-correlation electric field 
in terms of the Vignale-Kohn-Ullrich-Conti theory and demonstrate how 
this improves absorption spectra for semiconductors, thus giving the first 
explicit example of a density-polarization functional. 

It has been the author's contention that, at least for small molecules, the 
breakdown of the adiabatic approximation is rather minor for one-electron 
excitations compared to errors already present when common popular func
tionals are used in the adiabatic approximation. This contention has been 
largely confirmed by the general quality of excitation energies obtained by 
asymptotically-corrected functionals. Nevertheless it is known that, in con-
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trast to common practical functional which are relatively short ranged, 

/ ^ ( r , r ' ) ^ J ( r - r ' ) / r ( r , r ) , (20) 

the exact adiabatic exchange-correlation kernel is most likely rather long 
ranged. Thus Petersilka, Gossmann, and Gross[68] have shown that the 
kernel corresponding to Slater's model for the exchange-only potential, vx, 
is 

# r ( r , r O = -<W J x T ( r ? r ? 2 / A « ( 2 1 ) ρ σ (Γ)|Γ-Γ'|ρ σ (Γ') 

It might also contain particle-number derivative discontinuities [59]. For
tunately neglect of these effects in approximate adiabatic kernels does not 
seem to be a problem in many applications. 

Applications where the overlocality of the kernel does seem to be a 
problem include finite segments of conducting polymers where the T D D F T 
method overestimates the dipole polarizability along the chain and this 
overestimate can be made as large as you like by simply making the segment 
longer and longer, [69] and improper scaling with respect to the number of Κ 
points in periodic calculations. [13] Since the hope is that D F T calculations 
should be useful for larger molecules than traditional ab initio calculations, 
it is disappointing to see cases where the error due to the functional seems 
to grow with the size of the molecule. Errors due to the overlocality of the 
kernel have also been seen as underestimated charge-transfer excitations in 
small molecules. [52, 35] 

The solution at this point is not entirely clear but the area is under very 
active investigation. Certainly part of the solution for conducting polymers 
would seem to be the density-polarization functional of Boeij et al [60], if 
it can be adopted for molecular solids and for isolated molecules. I have 
also already mentionned the Slater approximation for the kernel [68], and 
the charge-transfer correction [52, 22]. Recently, Burke, Petersilka, and 
Gross have combined these two ideas to suggest a hybrid method in which 
the parallel-spin component of the kernel is approximated by the Slater 
approximation while the T D L D A is retained for the antiparallel component 
of the kernel. [70] Since the basis for the charge-transfer correction was 
the idea that, at least under certain circumstances, the T D D F T and D F T 
A S C F methods should give the same excitation energies, I am excited by 
the recent demonstration of Gonze and Scheffier [71] that T D D F T with 
the T D A and 2 L M gives the same answer as the A S C F method applied 
in the context of Gôrling-Levy adiabatic connection perturbation theory 
provided the exact exchange-only optimized potential theory is used within 
the Keldysh formalism of van Leeuwen [72]. 
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CONCLUSION 
The presence of T D D F T in most well-known quantum chemistry packages 
and its present popularity for applications, is an indication of the fact that 
T D D F T often works reasonably well in comparison with traditional ab ini
tio methods, especially for larger molecules. It is in fact remarkable that 
a method which was virtually unknown in the quantum chemistry commu
nity as little as half a decade ago should have been so widely accepted. It 
has been the purpose of this chapter to give a (necessarily biased) overview 
of present-day limitations of this still-young method and to suggest what 
directions should be pursued to improve functionals for practical applica
tions of T D D F T . Together we have climbed the rungs of the ladders on 
Jacob's jungle gym (Fig. 1). It is my hope that the reader will be able 
to take this information and be able to make somewhat wiser decisions 
about the choice of rungs appropriate for their accuracy requirements and 
computational resources. 
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Chapter 10 

Spectral Theory of Chemical Bonding 
P. W . Langhoff1-3, J. A. Boatz 3, R. J. Hinde4, and J. A. Sheehy3 

1Department of Chemistry, Indiana University, Bloomington, IN 47405-4001 
2San Diego Supercomputer Center, University of California at San Diego, 

9500 Gilman Drive, La Jolla, CA 92093-0505 
3 Air Force Research Laboratory, AFRL/PRSP, 10 East Saturn Boulevard, 

Edwards Air Force Base, CA 93524-7680 
4Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 

New theoretical methods are reported for obtaining the binding 
energies of molecules and other chemical aggregates employing 
the spectral eigenstates and related properties of their atomic 
constituents. Wave function antisymmetry in the aggregate 
atomic spectral-product basis is enforced by unitary transfor
mation performed subsequent to formation of the Hamiltonian 
matrix, greatly simplifying its construction. Spectral repre
sentatives of the individual atomic number-density operators, 
which can be determined once and for all and tabulated for fu
ture use, provide the computational invariants of the develop
ment. Calculations of the lowest-lying attractive and repulsive 
states of the two-electron pair bond (H2) as functions of atomic 
separation illustrate the nature of the formalism and its con
vergence to values in accord with results obtained employing 
conventional methods. 

Work supported in part by grants from the U.S. A i r Force Office of Scientific 
Research. 
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Introduction 
Adiabatic electronic wave functions (1) have long provided a useful starting 
point for quantitative predictions of chemical structures and the pathways 
of chemical reactions (2). Computational methods for such purposes com
monly employ totally antisymmetric basis functions in repeated calculations 
of the total electronic energy of a molecule or other chemical aggregate at 
a large number of atomic configurations, with binding energies at stable 
structures obtained in this way by subtracting the calculated energies of 
the non-interacting constituent atoms. A similar strategy is adopted in 
density-functional methods (3), which cleverly circumvent determinations 
of correlated many-electron wavefunctions but nevertheless calculate total 
energies, rather than binding energies, over the relevant range of aggregate 
geometries. Such methods have provided a great wealth information on 
structures and selected physical properties of molecules, but they arguably 
do not constitute a quantum theory of bonding in which chemical interac
tion energies are expressed in terms of intrinsic atomic properties (4). 

Role of the Symmetric Group 
A significant barrier to development of an atomic-interaction-based theory 
of chemical bonding is found in the antisymmetry requirement placed on 
physically admissible solutions of the Schrôdinger equation (5). Specifically, 
the permutation symmetry group of a collection of Ν non-interacting atoms 
is given by the direct product group 5 η χ Θ Sn2 ® · · · SnN of the electron per
mutation groups Sni, 5 n 2 , · · · SUN of the individual atoms, which is a sub
group of the permutation group Sntotal (ntotai = f»i 4- n 2 Η 1- TIN) for the 
entire aggregate (6). As a consequence, the outer product of atomic eigen-
states familiar from the perturbation theory of long-range interactions (7), 
which is correct in the atomic separation limit and provides an appropri
ately universal basis for describing chemical interactions (8,9), is reducible 
in Sntotal and generally contains irreducible representations of Sntotal other 
than the desired totally antisymmetric representation (6,10). Moreover, 
some of these non-totally-antisymmetric representations are known to con
tain unphysical continua in which the physical Schrôdinger eigenstates can 
be embedded (11,12). Outer-product reduction methods for isolating the 
totally antisymmetric subspace of the atomic spectral-product basis (6) are 
not generally suitable for this construction (10), and symmetry-adapted 
perturbative approaches which adopt alternative strategies to accomplish 
the required isolation of the totally antisymmetric subspace are either in
effectual or are inappropriate for the large charge distortions consequent 
of chemical bonding (12,13). Of course, the usual prior antisymmetriza-
tion of the basis does not allow the desired separation of the Hamiltonian 
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matrix into constituent atomic energies and their interactions in the aggre
gate, and can give rise to linear dependence and associated computational 
instablities. New approaches which can overcome the difficulties associated 
with employing an atomic-product representation in studies of chemical in
teractions, while retaining the conceptual and computational advantages 
associated with such an interaction-energy-based approach, are clearly re
quired. 

Spectral Theory 
In the present report, a new theoretical approach to chemical bonding is 
described based on the outer spectral-product representation of the inter
acting atoms (7-9). The aforementioned symmetric-group issues are over
come by deferring enforcement of wave function antisymmetry until after 
the construction of the matrix representative of the Hamiltonian in the 
spectral-product basis. The aggregate Hamiltonian matrix obtained in this 
way is additive in the energies of the atomic constituents and in their pair-
wise interactions. The atomic interaction-energy matrices can be expressed 
entirely in terms of spectral representatives of the electronic number-density 
operators of the individual atoms, which provide the computational invari
ants of the formalism. Since the required atomic spectral information can 
be determined once and for all from conventional electronic structure theory 
calculations, there is no need for the repeated evaluations of Hamiltonian 
matrix elements as integrals over antisymmetric many-electron basis func
tions required in standard molecular calculations (2,3). Construction and 
storage of the potentially very large Hamiltonian matrix that can arise in 
the spectral-product representation can be avoided by employing chem
ically relevant test functions and recursion methods in performing a uni
tary transformation to isolate its much smaller totally antisymmetric block. 
In this way, a physically significant Hamiltonian matrix is obtained from 
the non-interacting atomic energies, Heitler-London-like Coulomb and ex
change terms, and contributions from spectral excitations which correspond 
to dispersion and polarization terms familiar from long-range pertubation 
theory (7). 

Theoretical Formalism 
The essential features of the formalism are described here for an aggre
gate of η hydrogen atoms, with more general results reported elsewhere 
(14)· The orthonormal spectral-product basis in this case is the outer 
product row vector Φ ( ι , 2 , . . . η ) = { Φ ^ ^ ι ) ® Φ ^ ( » ) ® · * - Φ * η Η η ) } °f 
η-electron product functions, each of which consists of products of η func
tions, one each taken from the indicated one-electron spin-orbital row vec-
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tors Φ ^ ^ ι ) , φ ( 2 ) ( 2 ) , . . . φ ( η ) ( π ) . Although the η-electron functions so de
fined are not individually antisymmetric, the spectral-product basis is nev
ertheless complete for representations of antisymmetric states (7,8), and 
contains the totally antisymmetric representation once and only once (14)-

The many-electron (Coulombic) Hamiltonian operator in the spectral-product 
basis is 

H(H) = JT { H W + > a) V^(RQ0)}, (1) 
a=l β=1 

where 

= Θ l( 2 ) ® · · · Ε*"* Θ · · - I ( n ) (2) 

and 

ν^(ηαβ) = iw ® ι<2> β · · · ν^βΗηαβ) ® · · · i ( n ) (3) 

are the indicated outer matrix products. Here, R specifies the entire ag
gregate atomic configuration, Καβ is an atomic separation vector, and 1 ^ 
is the unit matrix and E( a) the diagonal matrix of energies for the atom a . 
As has been noted previously (14), the Hamiltonian matrix of E q . (1) is 
rigorously additive in the pairwise interaction-energy matrices ν^'^ΗΐΙαβ) 
of Eq . (3). In the latter equation 

yW\Ra0) = D i - ^ f A ^ t · y^(Ra0) • Ό^\Εαβ), (4) 

where Ό^α^(Ε,αβ) is comprised of products of rotation matrices (15,16) 
at the sites a and β, Ε.αβ is the angular orientation of atom β relative to 
the site a, is the corresponding scalar separation, and v^a^(R^) is 
a reduced interaction-energy matrix for the interacting pair oriented along 
a standard ζ coordinate axis. The latter matrix is given by the expression 

v^HRafi) = £ dk eik*R~t { a ( k ) Θ j9(k)*}, (5) 

with 

a (k) = (elk) ! dra 7 < « ) ( r e ) { l - e i k r * } , (6) 

where 

7

( a ) ( r Q ) = <#W(i)|iW(i - Γ β ) |Φ< β >(ι)>. (7) 
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Equations (5) to (7), which follow from a Fourier representation of the 
Coulombic interactions in the Hamiltonian operator (14), indicate that the 
atomic transition density matrices (17) of Eq . (7) provide the computa
tional invariants required for construction of both the (Coulombic) response 
matrices of E q . (6) and the reduced pair-interaction matrices of E q . (5). 
Use of the familiar Rayleigh plane-wave expansion and of standard expres
sions for the resulting angular integrations (15) reduces evaluation of E q . 
(5) to a single quadrature over the scalar k, whereas the integrals of Eqs. 
(6) and (7) can generally be evaluated in closed forms when Gaussian basis 
orbitals are employed. 

Antisymmetric Subspace 

Although the eigenfunctions obtained from the Hamiltonian H ( i l ) of E q . 
(1) span all irreducible representations of the symmetric group S n , they do 
not necessarily transform irreducibly under the symmetry group defined by 
the complete set of commuting observables, and they exhibit a high degree 
of degeneracy (14)· To demonstrate formally that the totally antisymmet
ric or physical block of H ( H ) can be isolated and solutions obtained in 
symmetry-adapted form, the unitary transformation 

U s ( i t )< .H<K) .U s <*)^(<<*> h , , » b ) ) (8) 

is employed. Here, the transformation Us(-R) is obtained from the diago
nalization 

υ 8 ( Η ) * · 8 ( Λ ) . υ 8 ( Λ ) - » η ! ( ^ Q%) , (9) 

where 

S(K) = (μΙ)ι'2(Φ(ι,3,... , η ) | Ρ Λ | Φ ( ι , a , · · • , η ) ) (10) 

is the matrix representative of the antisymmetrizer PA (5), nl is the re
dundancy of the spectral-product basis when antisymmetrized, (p) and (r) 
refer, respectively, to physical and remainder subspaces of Φ ( ι , 2 , . . . η ) , 
I<*> and 0<p> are the unit and null matrices in the indicated subspaces, and 
the right-hand sides of Eqs. (8) and (9) are reached in the closure limit. In 
this limit, the eigenvalues and functions obtained from H g ^ (R) converge to 
values obtained in the prior antisymmetrized basis Ρ Α Φ ( Ι , 2 , . . . η ) when 
its (η! — 1) redundant components are are removed (7}14)-
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Although Eqs. (8) to (10) provide formal expressions to isolate the phys
ical eigenstates from the unphysical states in which they can be embed
ded, and to correspondingly demonstrate equivalence with results obtained 
from prior antisymmetry (14), an efficient recursive scheme using appropri
ately chosen antisymmetrized starting functions is sufficient to construct 
H g ^ (R). Specifically, a transformation of the Hamiltonian matrix which 
is equivalent to that of Eq . (8) is obtained from the recurrence equations 
(18) 

0j(R) v i + 1 (H) = (Η<+>(Λ) - aj(R) I) · ν , ( Λ ) - ft-i(H) vj-iiR), (11) 

where the column vectors Vj(R) for j = 1,2,. . .p define a set of ρ or
thonormal Krylov-Lanczos functions in the spectral-product basis, the re
currence coefficients aj(R) and βι(Ε) give the diagonal and off-diagonal 
terms, respectively, of a p-dimensional tri-diagonai matrix which is unitar-
ily equivalent to the Hamiltonian matrix Η ^ ( Λ ) of E q . (8), and H ^ ( J R ) 
is the spectral-product Hamiltonian matrix supplemented with an addi
tional row and column. The latter is constructed with an asymptotically 
(R —)- oo) correct antisymmetrized-product test function which insures that 
the totally antisymmetric subspace of the spectral-product representation 
is isolated in the Krylov-Lanczos basis, that the correct number of multiplet 
states and their exchange splittings are included in the atomic separation 
limit, and that an appropriate starting vector is provided for the recurrence 
of Eq . (11) (14)- This iterative approach requires only sequential calcula
tions of individual rows of the potentially very large Hamiltonian matrix 
in the spectral-product basis, avoiding construction and tabulation of the 
entire matrix at one time. Moreover, the resulting unitary transformation 
provides a much lower-dimension physically significant Hamiltonian matrix 
from the zeroth-order non-interacting atomic energies, first-order Coulomb 
and exchange terms, and higher-order contributions which correspond to 
dispersion and polarization terms familiar from long-range pertubation the-
ory (7,14). 

Computational Applications 
Calculations of the lowest-lying attractive and repulsive states of the electron-
pair bond (H2) illustrate the attributes of the formalism and the conver
gence achieved. In this case (ritotai = 2), the spin functions factor out, there 
are no unphysical irreducible representations to contend with, and the de
velopment deals only with spatial functions which are symmetric (singlet) 
or antisymmetric (triplet) under electron transposition (6). The spectral-
product representation spans these spatially symmetric and antisymmetric 
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representations of the group S2 once and only once, whereas the symmetric 
or antisymmetric forms of the basis are 2-fold redundant in the limit of clo
sure. The absence of unphysical irreducible representations in this special 
case allows construction of solutions by direct diagonalization of the Hamil
tonian matrix of Eq . (1) for comparisons with results obtained from the 
unitary-transformation [Eqs. (8) to (10)] and recursion [Eq. (11)] methods 
described above. 

The spectral-product basis in this case corresponds formally to all products 
of discrete and continuum hydrogenic orbitals for the two atoms. To avoid 
dealing explicitly with continuum hydrogenic states, denumerable represen
tational basis sets are employed in the calculations in the usual way (2). 
Even-tempered Gaussian functions (s,p,d,f,...) having exponents chosen 
to represent the lowest-lying atomic hydrogen orbitals accurately, and to 
span the corresponding Rydberg states and low-lying continua in the form 
of spectral packets (18), are employed in evaluating the matrix elements 
required in forming the spectral-product Hamiltonian matrix and the other 
integrals needed to implement the development. 

In Table I are shown the spectra of atomic energies obtained for s,p, d and / 
orbitals constructed in even-tempered Gaussian basis sets (19), with orbital 
exponents chosen so the discrete and lower continuum states are spanned 
by the numbers of orbitals shown for each angular momentum value. A l 
though no systematic studies of orbital selection are reported here, it should 
be noted that considerable experience has been gained in this connection 
through previous studies of the discrete and continuum states of atoms and 
polyatomic molecules (18). The spectra of Table I are judged to be suitable 
for describing the charge distortions accompanying chemical bond forma
tion in H2 in the interval R « 1 to 5 ao, to correctly describe wavefunction 
antisymmetry in this interval in the absence of explicit electron exchange 
terms, and to otherwise approximate spectral closure in this interval. Con
sequently, the atomic basis sets so devised are seen to be significantly larger 
than those commonly employed in molecular electronic structure calulations 
(2). This use of larger atomic basis sets in the spectral theory is largely 
ameliorated by the need to perform electronic integral evaluations once 
and only once, and by the associated avoidance of repeated calculations of 
molecular integrals over antisymmetric basis states required in conventional 
developments. 

In Figure 1 are shown as an example selected eigenvalues Si of the metric 
matrix S(R) of Eq . (10) for H2, evaluated employing the [sp] basis sets 
indicated in Table I. Only the fifty largest (si « 2) and the fifty smallest 
(si « 0) eigenvalues are shown as functions of the interatomic separation. 
The eigenstates of S(R) corresponding to eigenvalues Si « 2 refer to ap-
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Table I. Spectral Energies for Atomic Hydrogen. 0 

s-basis* p-basis* d-basis* f-basis6 

-0.499991 -0.124998 -0.055256 -0.026707 
-0.124994 -0.053439 -0.011199 0.028807 
-0.048465 0.025060 0.108901 0.187597 

0.088668 0.274825 0.450236 0.617389 
0.563368 0.986192 1.361055 1.748440 
1.951139 2.880038 3.708833 4.791877 
5.660465 7.854649 9.719458 

15.152536 21.314359 25.786063 
38.982050 
98.333482 

249.224098 
657.488778 

a Orbital energies (a.u.) obtained from diagonalization of the atomic hy
drogen Hamiltonian employing the indicated basis sets. 
6 Basis sets employed are the most diffuse (12s8p8d6/) hydrogenic orbitals 
constructed from 12 regularized even-tempered primitive Gaussian orbitals 
of each angular momentum symmetry (19), supplemented with two addi
tional diffuse functions having exponents of 0.02786 and 0.01156 in each 
case. 

D
ow

nl
oa

de
d 

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

0

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



229 

1 2 3 4 5 6 7 8 9 10 

Internuelear Distance ( a0) 

Figure 1. Eigenvalues si of the metric matrix of Eq . (10) for H2, constructed 
in the [sp] basis set of Table I as functions of interatomic separation R(ao). 
Values Si « 2 refer to approximately antisymmetric eigenfunetions of elec
tron coordinates constructed in the spectral-product basis, whereas vines 
Si « 0 refer to approximately symmetric functions of electron coordinates, 
as is discussed more fully in the text. 
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proximately antisymmetric states in the spectral-product basis, whereas 
those correponding to « 0 refer to approximately symmetric states. On 
the other hand, states constructed in the prior antisymmetrized basis cor
responding to the Si « 2 values refer to linearly independent spatially 
antisymmetric states, while those corresponding to Si « 0 values refer to 
linearly dependent combinations of the prior antisymmetrized basis. When 
the two-electron symmetric projector is employed in place of the antisym-
metrizer, results identical to the foregoing are obtained, but with the states 
previously corresponding to Si « 2 and Si « 0 interchanging their identities. 

A significant number of the eigenvalues of S (R) depicted in Figure 1 evi
dently maintain their extreme values (si « 0 or 2) over the chemical inter
action region (R « 1 to 5 oo), whereas only a very few of these survive into 
the van der Waals region (β « 5 to 10 ao). These behaviors are entirely in 
accord with the spatial characteristics of the spectral states corresponding 
to the eigenvalues of Table I employed in constructing S(R), which have 
relatively small amplitudes at distances « 5 to 10 ao from the atomic ori
gins. Accordingly, the basis of Table I can be expected to give converged 
results in the chemical interaction region, and particularly at the equilib
rium interatomic separation (R = 1.40 ao), whereas alternative basis sets 
will likely be required to achieve closure at larger interatomic separations. 
These can be devised employing more diffuse Gaussian basis sets following 
previously described selection criteria (18). 

The spectra of Table I are employed in calculations of energies and expec
tation values for the lowest-lying *Σ+ and 3 Σ + states in H 2 at the equil-
brium interatomic separation following the development of Eqs. (1) to (10). 
The total energies, binding energies, and expectation values of the electron 
transposition operator P 1 2 for both states, shown in Table II, evidently 
converge monotonically to known values with increase in basis-set angular 
momentum. Similarly, the norms of the familiar singlet and triplet Heitler-
London functions (4) represented in the spectral-product basis, also shown 
in Table II, give additional indication of the closure achieved for exchange 
terms in this case. As indicated above, the values shown in Table II can be 
obtained directly from diagonalization of the spectral-product Hamiltonian 
of Eq . (1) or from the unitary transformation of Eqs. (8) to (10), with 
identical values resulting from the two procedures in the limit of closure. 
It is found in the smaller basis sets ([s], [sp]) of Table I, however, that 
relatively large blocks of the transformed Hamiltonian matrix of E q . (8) 
are required in order to reproduce accurately the results obtained from the 
complete spectral-product Hamiltonian matrix. That is, the totally sym
metric subspace in these cases is not completely isolated into a physical 
block which is small relative to the original spectral-product Hamiltonian 
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Table II. Electron Pair-Bond Calculations." 

Basis 6 Energy(a.u.) c Binding(eV) c (P12Y (| $(ZTL)|2) C 

Χ Σ + state 

M -1.0096 +0.2618 +0.5255 +0.8052 
[sp] -1.0691 +1.8809 +0.8409 +0.9469 
[spd\ -1.1140 +3.1027 +0.9525 +0.9872 
[spdf] -1.1384 +3.7667 +0.9847 +0.9967 

Exact (20) -1.1745 +4.7478 +1.0000 +1.0000 

3 Σ + state 

M -0.5586 -12.0109 -0.6226 +0.2950 
[sp] -0.6641 -9.1400 -0.6905 +0.8078 
[spd] -0.7249 -7.4856 -0.9317 +0.9538 
[spdf] -0.7524 -6.7372 -0.9801 +0.9870 

Exact (20) -0.7842 -5.8737 -1.0000 +1.0000 

a Values at R = 1.40 ao obtained from diagonalization of the Hamilto
nian matrix of Eqs. (1) to (3) for H2, or, equivalently, from the unitary 
transformation of Eqs. (8) to (10) in the text. 
6 Denotes the portion of the (12s8p8d6/) basis set indicated in Table I 
employed in the calculation. 
c Total and binding energies as indicated; (P12) refers to the expectation 
value of the electron transposition operator Pi2; \$(HL^\2 is the norm of the 
Heitler-London function as represented in the indicated spectral-product 
basis sets. 
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matrix of Eq . (1) by the the unitary transformation of E q . (8). These 
observations serve to emphasize that the development of Eqs. (8) to (10) 
provides a formal proof of the convergence of the spectral method in the 
closure limit, rather than an optimal computational implementation of the 
approach. 

The rate of convergence of the results of Table II with increasing angular 
momentum in the atomic basis is related to the nature of the charge distor
tions in H2 consequent of bond and antibond formation at the equilibrium 
interatomic separation. In Figure 2 is shown the one-electron charge dis
tribution in the plane of the two nuclei for the *Σ+ ground state obtained 
as indicated in the figure, with the undisturbed atomic charges of the two 
atoms in their Is states subtracted out. Evidently, there is a distinct line of 
electronic charge connecting the two nuclei in this density difference map 
which provides sufficient attraction to form the bond in this case, in ac
cordance with the predictions of the Hellmann-Feynman theorem. This 
additional "exchange charge," in an integrated amount equal to « 0.25 
electrons gathered from the outer-lying regions and concentrated between 
the two nuclei, is represented in the spectral-product basis by single-center 
overlap factors in the charge-density expression 

p(r) =ΣΓί,φ<?\τ)φ<?\τ)* + Ç r V < A f Hr)<$\r); (12) 

where Tw and Tjf form the one-electron density matrix in the orbital-
product basis, with two-center differential overlap factors absent conse
quent of the orthonormality of the spectral-product fucntions. The ex
change charge confined between the two atoms depicted in Figure 2 evi
dently requires the higher angular momentum functions of Table I for an 
accurate description of this accumulation upon bond formation, and also 
for corresponding convergence in the total energy and exchange factors of 
Table II. 

The recursive projection procedure described above provides an alterna
tive and potentially more efficient method for obtaining eigenstates than 
does the development of Eqs. (8) to (10). In the two-electron case, this 
procedure serves to separate the symmetric and antisymmetric subspaces 
spanned in the absence of unphysical representations, and can accelerate the 
convergence relative to that of Table II through incorporation of explicitly 
symmetric or antisymmetric test functions. In Figure 3 are shown Χ Σ + and 
3 Σ + potential energy curves in H 2 obtained from the recursive development 
and the basis states of Table I employing Heitler-London test functions in 
each case. These functions serve as appropriate chemical reference states 
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3 ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — \ — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — Γ 

2 h 

1 h 

O H 

-1 h 

-2 h 

_2 l ι ι ι ι I ι ι ι ι I ι t ι ι I ι t ι ι l ι ι ι .ι I ι l ι u J 

- 3 - 2 - 1 0 1 2 3 

Figure 2. Charge-density difference map for H2 in the plane of the two nu
clei, depicting the accumulation of charge between the two atoms upon bond 
formation in the ground 1Σ+ state. The quantity plotted is the total one-
electron molecular change density obtained from a configuration-interaction 
calculation using the [sp] basis of Table I, minus the charge density corre
sponding to the two unperturbed Η atoms in their Is ground states. The 
H2 bond length is fixed at 1.40 αο· The outermost solid contour represents 
a zero charge-density difference; successive solid contours are at charge-
density difference intervals of 0.02 a.u., with the innermost solid contour 
representing a charge-density difference of 0.1 a.u.; the outermost dashed 
contour corresponds to -0.003 a.u. and the innermost dashed contour to 
-0.006 a.u.; a total of « 0.25 additional electrons are accumulated in the 
bond. 
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2 1 1 II 1 1 I Μ I 1 I I 1 I 1 I II I 1 I I I I l l I M 1 M I I I I i 1 1 1 1 I II 1 
Ό . 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Internuelear Distance ( a0) 

Figure 3. Potential energy (a.u.) curves for the and 3 Σ + states of H 2 

as functions of atomic separation R(ao). Solid lines refer to Heitler-London 
(HL) (4) and previously determined accurate values ( K W ) (20), whereas the 
dashed lines give the present results obtained from the recursion procedure 
indicated in the text employing the [5], [sp], and [spd] basis states of Table 
I and Heitler-London test functions in each case. 
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at all interatomic separations, and also provide the starting functions re
quired to generate recursively the correct permutation symmetries in the 
spectral-product subspaces. Evidently, the spectral-theory potential curves 
of Figure 3 converge rapidly in the chemical region (R « 1 to 5 ao) as 
larger angular momentum values are included in the basis, the [sp] limit 
already providing « 90% of the chemical bonding energy at the equilibrium 
interatomic separation, and the [spd\ limit providing » 96% of this value. 
Finally, although the basis of Table I is insufficient to accurately determine 
the exchange energy splitting in the van der Waals region (R « 5 to 10 ao), 
the average value of the singlet and triplet energies obtainded in the basis 
in this region is found to give accurate results for the leading (Ce, C$,...) 
van der Waals coeffcients. 

Concluding Remarks 
A new method is reported for determining the adiabatic electronic wave 
functions and energies of molecules and other chemical aggregates. The 
spectral-product basis, formally comprised of all simple products of the 
physical eigenstates of the individual atoms in the aggregate, gives a Hamil
tonian matrix that is rigorously additive in pairwise-atomic interaction-
energy matrices, greatly simplifying its evaluation relative to conventional 
methods which employ antisymmetrized basis states (2,3). In this ap
proach, atomic structure calculations of electronic transition density matri
ces employed in evaluation of the Hamiltonian matrix need be performed 
once and only once, avoiding the repeated evaluations of many-electron 
matrix elements over antisymmetric molecular basis functions required in 
conventional potential-energy surface determinations. Procedures for iso
lating the totally antisymmetric subspace of the spectral-product basis are 
indicated which avoid construction and storage of the entire Hamiltonian 
matrix at one time, and which also largely overcome the symmetric-group 
complications which have hindered previous developments employing the 
atomic spectral-product representation (7-13). 

Applications of the formalism to the lowest-lying singlet and triplet states of 
H2 illustrate the convergence achieved to results obtained from conventional 
methods, and indicate that prior basis-set antisymmetry is not required in 
molecular electronic structure calculations. Although observations based on 
the illustrative calculations reported here are useful, additional computa
tional applications of the spectral method are required to clarify the nature 
of the spectral-product representation required more generally to accurately 
describe charge distortions consequent of chemical bonding. It should be 
noted that the Hamiltonian matrix for any aggregate of interacting hydro
gen atoms can be formed employing the calculated pair-interaction energy 
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matrices reported here and the development of Eqs. (1) to (4) employing 
explicit computational algorithims devised for this purpose. Applications of 
the spectral theory to more complex heteronuclear chemical systems entail 
additional computational evaluations of the appropriate atomic matrices 
Eqs. (5) to (7), obviating the need for additional calculations at the molec
ular or aggregate level. The results of such calculations, as well as other 
theoretical and computational aspects of the formalism, are reported sepa
rately elsewhere (14)· The desirable atributes of an atomic-based approach 
to molecular structure determinations suggests further studies of the spec
tral method reported here are warrented. 
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Chapter 11 

Comparison of CaF, ZnF, CaO, and ZnO: Their 
Anions and Cations in Their Ground and Low-Lying 

Excited States 

J. F. Harrison1, R. W. Field2, and C. C. Jarrold3 

1Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322 
2Department of Chemistry, Massachusetts Institute of Technology, 

Cambridge, MA 02139-4307 
3Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607-7061 

Abstract 

The results of large basis set ab initio electronic structure 
calculations using the RCCSD(T) method are reported for the 
bond lengths, bond energies, excitation energies, vibrational 
frequencies, dipole moments and charge distributions for the 
titled molecules and where possible compared with 
experiment and previous calculations The striking differences 
between the Ca and Zn compounds are discussed in terms of 
their relative ionic character. 

Introduction 

The excited electronic states of CaO and CaF may be understood in 
terms of a ligand field model (1,2) in which Ca is essentially C a + and hosts 
a 4s, 4p or 3d electron which is perturbed by the companion anion. Since Ca 
and Zn are ostensibly similar, both having an outer 4s 2 configuration, the 
question arises whether the excited states of ZnO and ZnF can be 
understood in terms of a similar ligand field model. Recent work on the 
photoelectron spectrum of ZnO and ZnF by Moravec et. al. (3) suggests that 
the answer is no and we will demonstrate that the reason is, primarily, 
because the Zn compounds are considerably less ionic than the 
corresponding Ca compounds. In this paper we compare and contrast the 
electronic structure of the title compounds. 

238 © 2002 American Chemical Society 
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Technical Details 

Unless otherwise noted, all calculations used the M O L P R O (4,5) 
system of programs (Versions 96.4 and higher) and the RCCSD(T) (6,7,8) 
method. The F and Ο basis sets were the A N O contraction of the Dunning 
aug-cc-pvqz set (9) with the g functions deleted (13s7p4d3f contracted to 
6s5p4d3f). The Zn basis is from Heineman, Koch and Partridge(lO) and is a 
20sl5p9d6f4g primitive set with an A N O contraction to 7s6p4d3f2g , while 
for Ca we use the basis of Bauschlicher, Rosi and Langhoff(ll), which is a 
primitive 20sl5p9d5£2g, contracted to 8s7p7d5£2g. Electron affinities, 
ionization energies and T0's are corrected for zero point vibration and scalar 
relativistic effects. The relativistic corrections and electron populations 
were obtained from a CISD calculation at the RCCSD(T) equilibrium 
geometry. A l l dissociation energies, D 0 , are reported relative to the lowest 
energy neutral adiabatic asymptote appropriate to the molecular symmetry. 
For example, D 0 for CaO(XlE*) is relative to Ca( 3P) + 0( 3 P) while for ZnO 
(Χ*Σ +) it is relative to Zn(*S) + 0( 1 D). 

Previous Theoretical Work 

Theoretical work on CaO dates from the early single configuration 
studies of Yoshimine (12), McLean and Yoshimine (13) and Carlson et. al. 
(14), all of which predicted the wrong ground state. Bauschlicher and 
Yarkony (15) pointed out the inadequacy of the single configuration 
representation of the Χ ! Σ + state, while calculations by England (16) were 
the first to obtain ιΣ+ as the ground state, in agreement with experiment 
(17). England also noted that the bond lengths calculated without core-
valence correlation were too long. In 1982 Diffenderfer and Yarkony 
(18,19) studied the low-lying X 1 Z + a n d Ή excited states while Bauschlicher 
and Partridge (20) corroborated the experimental dissociation energy of 
Irvin and Dagdigian (21) for the Χ 1 Σ + state. More recent work on CaF 
(22,23), CaO(24), CaO + and CaF + (25) will be discussed latter. 
Bauschlicher and Langhoff published (26) the first high-level calculation of 
ZnO and pointed out the sensitivity of the predicted ground state to the level 
of electron correlation. Subsequent work on ZnF(27,28), ZnO(28,29), and 
ZnO"(29,30) will be discussed latter. 
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Atomic Characteristics 

As one goes from Ca to Zn the 3d shell fills but does not completely 
shield the additional nuclear charge, resulting in the ionization energy (31) 
of Zn (9.39leV) being much larger than Ca (6.111eV). In addition, the 
atomic energy level pattern in Figure 1 shows that the 3P(4s4p) and the 3 D 
(4s3d) states of Ca are 1.892 and 2.525eV above the ground state while in 
Zn the 3P(4s4p) is at 4.054eV and the 4d orbitals lie 7.7eV above the ground 
*S. These low lying atomic states in Ca permit the atom to use pir and dir 
electrons in bonding, an option not energetically available to Zn. The 
situation in the positive ion is much more dramatic (31). The first excited 
state of C a + is a 2D(3d) state at 1.697eV while the 2P(4p) is only 3.142eV 
above the Ca +( 2S). In contrast, the first excited state of Z n + is a 2P(4p) state 
at 6.083eV. Clearly, Ca is a transition element in waiting! The proximity of 
the Ca 3d orbital to the ground state in both the neutral atom and positive 
ion plays a significant role in the electronic structure of CaF and CaO (vide 
infra). 

Figure 7. Selected energy levels ofCa and Zn 
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CaF and ZnF Results 

Neutrals 

Consider first the Χ 2 Σ + state of CaF and ZnF. The lowest neutral 
asymptote is the *S (metal) + 2 P U (F) and we envision a bond being formed 
between a sz hybrid on the metal (pointing toward the F) and the F 2p z 

orbital with the unpaired electron in the SZ hybrid on the metal pointing 

away from F. The valence electron configuration is szl(sz + / ? σ ) 2 # 4 where 

the i i electrons are localized on F. In the ionic limit the σ bonding electron 

pair will be transferred to F resulting in the configuration sz ρσ π . 

The population analysis shown in Table 1 suggests that while both 
molecules are considerably ionic, CaF is more so. This is consistent with 
the lowest ionic asymptote in CaF being 2.7leV above the ground state 
products and the resulting ionic curve crossing this asymptote at 5.31Â (2.7 
R e ) while the ionic products in ZnF are 5.99eV above ground and cross at 
2.40Â (1.4 Re). The calculated spectroscopic properties of CaF (Table 2) are 
in reasonable agreement with experiment and previous calculations. Our 
calculated ionization energy (Table 3) of CaF (5.82leV) is in good 
agreement with experiment (32)(5.828eV) and is approximately 0.3eV 
lower than the IP of Ca. Since the IP of CaF is equal to the Π 5 of Ca plus the 
difference between the D 0 of the neutral and positive molecule, CaF + ( 1 Σ + ) 
is more bound by approximately 0.3eV than CaF( 2 E + ) (vide infra). 
Similarly since the electron affinity of CaF (calc. 1.028eV) is equal to the 
E A of F(calc, 3.329eV ) plus the difference between the D 0 of the anion and 
the neutral molecule, the neutral is bound by 2.3eV more than the anion. 
Note that because our calculated E A of F( 2P) is too small (33) by 0.072eV, 
a better estimate of the E A of CaF is our calculated value plus this 
differential, or 1.095eV. The molecular E A corrected for the error in the 
atom is shown in parenthesis in Table 3. The calculated IP of ZnF is 
9.30eV, which is slightly smaller than our calculated IP of Zn (9.319eV, 
exp 9.39 leV) and so the bond energies in the neutral and positive ion are 
very similar. Our calculated E A of ZnF, corrected for the error in the E A of 
atomic F and for relativity (0.04SeV) is 1.929eV, somewhat smaller than 
the experimental (3) value of 1.974(8)eV. Our calculations imply that D 0 of 
ZnF( 2 E + ) is 1.435eV larger than Z n F ^ E 4 ) in reasonable agreement with 
the experimental value of 1.427eV. 
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Table 2. Fluoride results, previous calculations and experiment 

Molecule Source Re(Â) CueCcm"1) D 0(eV) T 0(eV) 

CàFÇft?) This work 1.957 587 5.47" 0.0 
Previous2 2 1.966 583 5.51° 0.0 
Experiment 1.96738 581 3 8 5.55* 3 9 ' 4 0 0.0 

Z n F C X 2 ! ^ This work 1.775 633 3.12" 0.0 
Previous2 8 1.796 593 0.0 
Previous2 7 1.787 601 1.99" 0.0 
Experiment3 620(10) 

CaF( 2 n r ) This work 1.943 594 5.30* 2.05 
Experiment38 1.952 587 5.40* 2.044 

ZnF( 2 n r ) This work 1.757 659 2.59* 4.63 
Experiment29 630 4.586 

CaFXX'Z*) This work 2.018 509 3.17e 0.0 
ZnFCX'E 1 ) This work 1.913 425 1.60e 0.0 

Experiment3 Χ 2 Σ + +0.15 420(10) 0.0 
CaF( 3 n r ) This work 1.992 537 4.04* 1.08 
ZnF( 3 n r ) This work 1.826 541 3.19* 2.53 
CaF'C'Z*) This work 1.876 692 5.80e 0.0 

Previous2 5 1.881 756 5.67e 0.0 
ΖηΤ^'Σ*) This work 1.708 748 3.15e 0.0 

a. Relative to M(lS) + F( 2P) 
b. Relative to M( 3 P) + F( 2P) 
c. Relative to M ^ S ) + F(*S) 
d. Relative to M( 3 P) + F( ! S) 
e. Relative to M + ( 2 S) + F( 2P) 
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The first excited state of CaF and ZnF is Α 2 Π Γ with the configuration 

^m(sz + ρσ)2π4 where the singly occupied itm electron is localized on the 

metal. The lowest energy asymptote is 3 P U (metal) + 2 P U (F), which is 
1.86eV and 3.966eV above the ground state products in CaF and ZnF. In 

the ionic limit the configuration is nmp2nA and the lowest 2 Π Γ ionic 

asymptote has the metal ion in a 2 P state. The ionic curves will cross the 
neutral asymptote at 5.65À (2.9 Re) in CaF and 1.78À (1.0 Re) in ZnF and 
accordingly we expect CaF to be significantly more ionic than ZnF and this 
is supported by the population analysis (Table 1). 

The singly occupied 7rm in CaF has the composition p^10d^21 while in 

ZnF it is plf. Given that the energy of the 3d orbital in C a + 2D(3d) is 1.697 

eV above the 2S(4s), while the 2P(4p) is 3.142eV, it is surprising, in so ionic 
a molecule, that the 3d orbital is not dominant. It could be that this 
composition is energetically favored over a single d electron because of the 
increased polarizability of the 4p component, the reduced repulsion with the 

F IT orbitals that obtains when the pndn orbital hybridizes away from F, and 

the more favorable quadrupolar interaction with F(the zz component of the 
quadrupole tensor of the 4pir orbital is positive while that of the du is 

negative). As first noted by Ernst and Kandler (35) this ρπάπ mixing 

explains why the dipole moment of CaF (Table 4) in the Α 2 Π Γ state (2.57D 
cale, 2.44D experiment) is significantly smaller than that of ZnF while in 
the ground state they are comparable (3.05D vs. experiment (36), 3.12D). 
Note that, for ZnF, the Α 2 Π Γ state is stabilized by the quadrupolar 
interaction of the metal centered ρπ orbital with F". The bond length of both 
CaF and ZnF in the excited Α 2 Π Γ state is smaller than in the ground Χ 2 Σ + , 
state, contracting by 0.014 and 0.018Â, while the corresponding frequencies 
increase by 7 and 26 cm"1 respectively. 

The generalized Morse potentials (37) in which the molecules 
dissociate to their lowest neutral asymptotes, are shown in Figures 2 and 3 
and illustrate the significantly larger D 0 of CaF (an ionic effect) and the 
significantly smaller T 0 which is a consequence of the much smaller *S, 3 P 
separation in Ca relative to Zn. This small separation also permits the Α 2 Π Γ 

state in CaF to be bound relative to the ground state atoms . 

Anions 

Adding an electron to the singly occupied metal centered σ orbital in 
either the Χ 2 Σ + state, or Α 2 Π Γ state results in a state in which the additional 
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Table 3. Ionization Energies and Electron Affinities 

Molecule IP(eV) EA(eV) 

Calculated Experiment Calculated Experiment 
CaOC'E") 6.767 6.66(8)42 0.865(0.977) 
ΖηΟ^Σ*) 9.260 1.927(2.039) 2.087 3 ' 3 4 

C a F ( 2 E + ) 5.821 5.8283 6 1.028(1.095) 
ZnF( 25T) 9.303 1.857(1.929) 1.974(8)3 

Ca('S) 6.097 6. I l l 3 1 

Zn('S) 9.319 9.391 3 1 

F( 2P) 3.329 3.401 3 3 

0( 3 P) 1.349 1.46133 

Table 4. Dipole moments (Debye) 

Molecule This Work Experiment Previous Calculation 

C a F i X ^ * ) 3.05 3.07(7)3 6 3.06 
ZnF(X 2 Z + ) 3.12 3.24 2 8 

CaF( 2 n r ) 2.57 2.44 3 5 

ZnF( 2 n r ) 3.80 
CaO(X'Z + ) 8.84 8.64 1 6 

ΖηΟ(Χ ιΣ*) 5.49 5.37 2 8 

CaO( 3nO 3.48 3.39 1 6 

ZnOOTIi) 2.62 2.61 2 8 

CaO^E 4 ) 2.61 2.55 1 6 

Z n C K 3 ! 4 ) 3.11 3.122 8/3.09 : 
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electron is localized on the metal (see Table 1). In the *Z+and 3 Π Γ states of 
CaF' and ZnF", F has a Mulliken charge very similar to its charge in the 
neutral predecessors. There are no previous calculations on these molecules 
and the only experimental (3) data is the bond length of ZnF' (ΧιΣ+) relative 
to ZnF 

R ( Angstroms) 

Figure 2. Generalized Morse Potentials for CaF and CaF 

R (Angstroms) 

Figure 3. Generalized Morse Potentials for ZnF and ZnF 

(Χ 2Σ*). Our calculated differential is +0.138Â, in reasonable agreement 
with the experimental value of +0.150Â. The bond length contraction upon 
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excitation discussed earlier for the neutral fluorides is also seen in the 
anions. In CaF" the 3 Π Γ bond length is 0.02Â shorter than in the ΧιΣ+ state 
while in ZnF" the contraction is a substantial 0.087Â. 

The Morse potential curves shown in Figures 2 and 3 illustrate several 
interesting features. The 3 Π Γ state of C a F and the 2 Σ + state of CaF are both 
bound relative to the Ca^S) + F( ! S) asymptote while neither ZnF( 2 E + ) nor 
Z n F ( 3 n r ) are bound relative to Zn (lS) + F ( l S) . As noted, the small Ca^S, 
3P) separation of 1.86eV (less than the electron affinity of F) plays a major 
role in this. Also, the CaF( 3 n r ) state is 0.03eV below the CaF( 2 X + ) state 
while ZnF"( 3n r) is 0.60eV above the ZnF( 2 E + ) . These energy separations at 
the equilibrium geometry for each state are summarized in Figure 4. 

ZnF (2nr;4.63ev) 

CaF' (3n r ; ~0.03eV) ZnF (2Σ+ ; 0.0 eV) 

CaF' (V; -1.1 OeV) 

ZnF- (V;-1.93eV) 

Figure 4. Comparison of CaF and ZnF and their Anions 

Cations 

Removing an electron in the singly occupied σ orbital from the Χ 2 Σ + 

state of either ZnF or CaF results in a Χ ! Σ + state. The population analysis in 
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Table 1 supports the view that the removed electron comes from the metal, 
as the Mulliken charge on F is only slightly less negative than in the neutral 
molecule. Clearly the large electrostatic stabilization that results from the 
highly positive metal and the negative F makes electron transfer to the 
metal energetically unfavorable. In both cations the calculated D 0 is larger 
than that of the neutral parent, another reflection of the increased ionic 
character. There are no experimental data on these cations . While our D 0 

and Rg for CaF*" are in reasonable agreement with the previous calculations 
of Partridge et al (25), our vibration frequency is significantly smaller. 

CaO and ZnO Results 

Neutrals 

While both CaO and ZnO have a Χ*Σ + ground state they dissociate to 
different atomic electronic states. The lowest neutral asymptote for CaO has 
Ca in an excited 3 P U and Ο in the ground 3 P g . This asymptote permits a 
sigma bond between the Ca 4s and Ο 2pz orbitals (taking the internuclear 
line as the ζ axis) and a it bond that is a mixture of a covalent interaction 
between the Ca itx orbital and the Ο px and a dative bond involving 
donation from the Ο py lone pair into the formally empty Ca ity orbital. The 
proximity of the 3 P U and 3 D states of Ca ensures significant 3d character in 
the Ca IT orbital. The lowest ionic asymptote (Ca+0~) permits a sigma bond 
between the C a + 4s and the O" 2pz orbitals, and two dative bonds from the 
Ο lone pairs in the it system. The low-lying pit and dit orbitals on C a + 

facilitate significant back donation. This ionic curve will cross the neutral 
asymptote around 5.16Â, which is 2.8 times Re (vide infra) while the doubly 
ionic asymptote (Ca^O") will cross the neutral asymptote around 3.9A (2.1 
R e ) . The early crossing of these two ionic curves with the neutral asymptote 
insures that the Χ*Σ+ state will have considerable ionic character. The 
lowest neutral asymptote for ZnO has Zn in the ground *S and Ο in the 
excited lDg state. This asymptote permits a dative sigma bond between the 
Zn 4s pair and the empty Ο pz. Both ionic asymptotes (Zn +0" and Zn^O") 
cross the neutral asymptote at 2.41Â or 1.4 R e and accordingly one expects 
less ionic character than in CaO. The lowest ionic asymptote permits a 
covalent bond between the singly occupied 4s and 2p z on Z n + and O" and 
the same dative bonds as in Ca +0", however, since the pTt orbital in Z n + lies 
at much higher energy than the dit orbitals in C a + they are not expected to 
participate as fully. The population analysis in Table 5 suggests that CaO be 
viewed as C a ^ O " with considerable back-donation from Ο to the Ca 3d 
orbitals, resulting in a 3d population of 0.77 electrons. ZnO however does 
appear to be consistent with a single bond between Zn+(4s) and Ο" (2ρ σ). 
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Calculated and experimental spectroscopic properties of the neutral oxides 
are collected in Table 6 

The a 3ni state of both molecules correlate to the lowest atomic 
asymptotes, which permits a sigma bond between the singly occupied Ο 2p z 

orbital and an sz hybrid on the metal, leaving the triplet coupled electrons 
in the companion sz hybrid on the metal and on Ο in the pir orbital. Note 
that only a singly charged ionic asymptote can contribute to this state (and 
the 3 Σ + , vide infra) and the lowest ionic crossings occur at 3.10Â (2.1 Re) 
and 1.8Â (1.0 Re) for CaO and ZnO respectively, consistent with the 
population analysis results (Table 5) that CaO is the more ionic. 

The 3 Σ + states of both molecules correlate to the excited 3 P U state of the 
metal and the ground 3 P g state of O. The four unpaired electrons in this 
asymptote can be triplet coupled in three ways and this permits the wave 
function to be a mixture of a σ bond with the IT electrons triplet coupled and 
a Έ bond with the σ electrons triplet coupled. The lowest ionic asymptote, 
metal (4s) + 0"(2p5) has the -κ electrons singlet coupled and crosses the 
neutral asymptotes at 5.16À (2.6 Re, Ca +0") and 3.66Â (2.0 R e , Zn + 0" ) 
suggesting that the triplet coupled electrons will be primarily in the σ 
system. Because the 2 S- 2 D separation in C a + is only 1.697 eV, a second 
ionic asymptote, Ca +( 2D) + 0"(2P) is important and crosses at 3.21 A (1.6 
Re), differentially stabilizing CaO, over ZnO. The relative locations of these 
states are shown in Figures 5 and 6. 

J ι I ι > ι I ι I 

0 2 4 6 8 
R(AngBtnorrB) 

Figure 5. Generalized Morse Potentials for CaO 
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Table 6. Oxide results, previous calculations and experiment 

Molecule Source Re(Â) ci^cm"1) D 0(eV) T 0(eV) 

CaO(X'E + ) 

ΖηΟίΧ'Σ 4 ) 

CaOC'nO 

ΖηΟ( 3Πί) 

CaO^E*) 

ΖηΟ^Σ*) 

This work 1.829 721 5.91" 0.0 
Previous 1.88616 677 1 6 6.03"· 4 1 0.0 
Experiment 1.8221 732 5.96"· 2 1 0.0 
This work 1.715 741 3.54* 0.0 
Previous2 9 1.719 727 3.59* 0.0 
Previous2 8 1.733 690 3.25* 0.0 
Experiment 805(40)34 3 .57 M 2 

Experiment3 720(20) 

This work 2.082 543 3.07c 0.92 
Previous2 4 2.086 544 3.08c 

Previous1 6 2.153 508 
Experiment17 2.099 556 1.031 
This work 1.850 577 1.31c 0.35 
Previous2 9 1.857 567 1.38c 0.26 
Previous2 8 1.873 525 0.04 
Experiment Χ'Σ + +0.126 3 550(20)3 1.36c'34 0.313(10)3 

This work 1.964 587 4.78° 1.07 
Previous1 6 2.031 554 
This work 1.801 596 3.87d 1.83 
Previous2 8 1.818 561 1.512 
Previous3 8 1.816 611 1.465 
Experiment3 X^ + +0.086 560(20) 1.875(10) 

a. Relative to Ca(3P) + 0( 3P) 
b. Relative to Zn( !S)+ 0 ^ 0 ) 
c. Relative to ground state products 
d. Relative to Zn( 3P) + 0( 3P) 
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0 2 4 6 8 
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Figure 6. Generalized Morse Potentials for ZnO 

The Mulliken populations (Table 5) are consistent with the long 
standing view that CaO is essentially Ca + 0" and has a comparable ionicity in 
the a3IIi and 3 Σ + states and that they differ primarily in the orientation of the 
ρ hole on O", with the a 3Ili hosting a ττ hole and the 3 Σ + the σ hole. In ZnO 
however the a3IIi state is less ionic than the 3 Σ + state and both are less ionic 
than CaO. The difference in ionicity between CaO and ZnO contributes to 
the significantly different a3IIi - 3 Σ + energy separation. In CaO the a3IIi state 
lies 0.143eV (calculated, 0.142eV) below the 3 Σ + state while in ZnO the 
states are in the same order but separated by 1.56eV (calculated, 1.41eV). 
The order of the two states and their separation in CaO has been attributed 
to the differential in the monopole-quadrupole interaction between C a + and 
the two orientations of O", and while this interaction is certainly present in 
ZnO the ionic character has not overcome the residual covalence in the 3 Σ + 

state, resulting in much larger separations. As shown in Figure 6, the 3 Σ + 

state traces its lineage to the Zn( 3P) + 0( 3 P) asymptote, 3.996 eV above the 
ground state products, while the corresponding asymptote in CaO is only 
1.86eV above ground state products (Figure 5). 

Not surprisingly the dipole moment of CaO ( X ^ * ), 8.84D, is very 
close to that expected for two unit charges separated by the calculated bond 
length, 8.79D, and is significantly larger than that of ZnO ( Χ*Σ + ), 5.49D . 
The same model predicts the dipole moment of Zn + 0" to be 8.24D and 
scaling this by the Mulliken charge gives 6.75D, still larger than the ab 
initio value. Since the 4s on Zn seems unhybridized it will not contribute to 
a decrease in the dipole moment. However, the 2s-2pa hybrid on Ο will be 
polarized toward Zn and away from Ο and this could account for the 

• 2<1S)+0(1D) 

i ι ι ι ι ι ι ι ι 
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decrease from 6.75D to 5.49D. There are no experimental values for these 
dipole moments. Our calculated bond lengths for the Χ*Σ + and a3IIi states of 
CaO differ from experiment by +0.007À and -0.017Â respectively. While 
there are no experimental ZnO bond lengths, Moravec et. al. (3) have 
reported the equilibrium bond lengths of ZnO a3IIi and 3 Σ + re la t ive to ΧιΣ+ 

of +0.126À, and +0.086Â and we calculate +0.135À and +0.086Â. Unlike 
the fluorides, the bond length in the oxides increases upon electronic 
excitation. Our calculated vibration frequencies for CaO in the Χ*Σ + and 
a 3Ili states are less than experiment by 11cm 4 and 13cm"1 while for the 
three reported states of ZnO we are larger than experiment (21cm"1 in X ^ + ; 
27cm"1 in a3IIi, and 36cm"1 in 3 Σ + ) although there is a 20cm"1 uncertainty in 
the experimental numbers. D 0 values for the X ^ + states, referred to the Ca 
(3P) + 0( 3 P) and Zn(lS) + 0( ! D) asymptotes are in good agreement with 
experiment. T 0's for CaO(a3nj ) and ZnO(a3IIi ) both differ from experiment 
by -0.05eV while our ΖηΟ( 3 Σ + ) is too low by 0.178eV. Our calculated 
ionization potentials for both CaO and ZnO are in reasonable agreement 
with experiment (calculated, 6.77 and 9.26eV ; experimental, 6.66(18) and 
9.095eV). 

Anions 

Calculated and experimental spectroscopic properties for the anions are 
collected in Table 7. Adding an electron to the Χ 2 Σ + state of CaO or ZnO 
results in a 2 Σ + state in which the additional electron is localized in the 
sigma system and shared between the metal and O. In CaO" most of the 
electron stays on Ca as the in-situ charge on Ca decreases from 1.18 to 0.32, 
accounting for 0.86 of the added electron, while in ZnO' the Zn charge 
decreases from 0.82 to 0.17, accounting for 0.65 of the added electron and 
reflecting the larger ionic character of CaO. The bond lengths in CaO" and 
ZnO" both increase (0.064À and 0.044Â), while the vibration frequencies 
decrease by 50cm'1 and 76cm"1 respectively. Adding an electron to the a3IIi 
state of the neutral oxide results in a 2ΠΪ state in which the added electron is 
essentially localized in the sigma system of the metal. In CaO" the in situ 
charge decreases from 0.85 to -0.16 while in ZnO it drops from 0.61 to -
0.47 accounting for 1.01 and 0.86 electrons respectively. The 2 Π Γ state of the 
anions is best thought of as obtaining from the addition of an electron to the 
Χ ! Σ + state. In CaO" the added electron is in a metal centered η orbital with 
*u 0.67 jO.25 , . ^ A , 0.70 ,0.27 

the composition ρπ dn , remarkably similar to the pn dn occupancy 

in CaF ( 2 Π Γ ) . 
There are no experimental data on the CaO anions and little on ZnO". 

The photoelectron spectroscopic study of Fancher et al (35) suggests that 
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Table 7. Oxide Ion results; previous calculations and experiment 

Molecule Source Re(Â) Cûfetcm"1) Do(eV) 

CaOXX 2 !*) 
ΖηΟ"(Χ2Σ*) 

This work 1.893 671 3.54" 0.0 CaOXX 2 !*) 
ΖηΟ"(Χ2Σ*) This work 1.759 665 2.19" 0.0 

Previous2 9 1.764 664 2.20" 0.0 
Experiment34 X^ + +0.068 625(40) 2.24(5)" 0.0 
Experiment3 Χ'Σ ++0.048 650(50) 

CaO(2ni) This work 2.151 467 2.79" 0.72 
ΖηΟ-( 2Π0 This work 

Experiment3 

1.984 407 1.50" 0.71 
0.73 

CaO"(2nr) This work 1.869 665 4.18* 1.36 
ΖηΟ"(2ΠΓ) This work 1.762 641 3.27* 2.89 

CaO+(2nj) This work 1.992 638 3.33e 0.0 
Previous2 5 1.996 669 3.29e 0.0 

ΖηΟ +( 2Πί) This work 1.798 644 1.66e 0.0 

This work 1.875 704 4.94d 0.08 
Previous2 5 1.885 728 3.29" 0.09 

ΖηΟ +( 2Σ+) This work 1.708 759 1.74e 1.99 

a. Relative to M(lS) + 0"(2P) 
b. Relative to M( 3 P) + 0'( 2P) 
c. Relative to M + ( 2 S) + 0( 3 P) 
d. Relative to Ca +( 2D) + 0( 3 P) 
e. Relative to Zn +( 2S) + O^D) 
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the bond length in ZnO"( Χ 2 Σ + ) is 0.068À larger than in Z n O ( X ^ + ) while 
Moravec et al (3) suggest 0.048Â, much closer to our computed value of 
0.044Â. Additionally our computed frequency, 665cm"1 agrees better with 
the 650cm"1 result of Moravec et al than with the 625cm"1 result of Fancher 
et al, although both experimental frequencies have large uncertainties. The 
relative energies of CaO, ZnO and their anions are shown in figure 7, while 
the Morse potentials comparing CaO and CaO" and ZnO and ZnO" are 
shown in figures 8 and 9 respectively. 

Cations 

The 2Πΐ ground states of both CaO + and ZnO + dissociate to the 
metal+(2S) + 0( 3P) asymptote while the excited 2 Σ + state dissociate to 
Ca + ( 2 D) + 0( 3 P) and Zn +( 2S) + 0(ιΌ). Our calculations suggest that CaO + 

in both the 2Πί and 2 Σ + states should be considered Ca^O" with some back 
donation (0.25 electrons) into the 3d orbitals of Ca, resulting in a charge of 
approximately +1.75. This Ca4"1" character is consistent with the location of 
the lowest doubly positive asymptote, Ca"1"1" ( !S) + 0"(2P) , which is 8.7 l e V 
above the Ca +( 2D) + 0( 3P) asymptote. The resulting doubly positive curve 
intersects the lower asymptote at 3.31Â or 1.8 Re, permitting considerable 
charge transfer. There is also significant Zn^O" character to ZnO + in the 2 Σ + 

state (the Zn charge is +1.60) but somewhat less in the 2Πί ground state 
where Zn has a charge of +1.45. These charges are also consistent with the 
doubly positive Zn asymptote being 14.5 and 16.5eV above the 2IIi and 2 Σ + 

asymptotes. The charge distribution on Ο in the 2 Π 4 and 2 Σ + states of CaO + 

is remarkably similar to that on Ο in the 3Πί and 3 Σ + states of neutral CaO 
and this similarity is reflected in the comparable Πι - Σ + energy separation in 
the neutral (0.15eV) and positive ion (0.08eV), reinforcing the idea that this 
separation is dominated by the same quadrupolar interaction in both 
systems. The Πι - Σ + separation in ZnO + (1.97eV) is comparable to that in 
ZnO (1.48eV) and considerably larger than in the corresponding CaO 
system, reflecting the effects of residual covalent bonding in the ZnO 
system. There are no experimental data on either of these cations, but there 
are calculations (25) on CaO + with which we are in reasonable agreement 
(see Table 7) 

Conclusions 

On the basis of the many detailed results presented in this work we 
conclude that the fundamental difference between the electronic structures 
of CaX and ZnX molecules is that CaX is much more ionic than ZnX. 
Although the 3d shell fills completely in going from Ca to Zn, it does not 
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completely shield the increased nuclear charge on Zn and its ionization 
energy, 9.391eV is much larger than that of Ca (6.111 eV). This results in 
an ionic-covalent curve crossing at a much shorter internuelear distance in 
ZnO than in CaO. For example, the Χ ! Σ + state of CaO correlates with the 
Ca( 3P) +• 0( 3 P) neutral asymptote, and the potential energy curve of the 
lowest ionic products, Ca +( 2P) + 0"(2P) crosses this asymptote at 5.2 Â. 

However, the Χ ! Σ + state of ZnO correlates with the Zn(*S) + 0(*D) neutral 
products and the lowest energy ionic products cross this neutral asymptote 
at 2.41 Â with the result that CaO is more ionic than ZnO. 

2.0 r 

1.5 h 

1.0 μ 

0.5 

ZnO (V;1.83eV) 

^5 oo 
UJ 

-0.5 

-1.0 

-1.5 h 

-2.0 

CaO (V;1.07eV) 

CaO (3n , ; 0.92eV) 
CaO" ( 2 Π Γ ; 0.26eV) 

CaO (V ; 0.0 eV) 

CaO" ( 2 Π| ; -0.26eV) 

CaO- ( 2 Σ + ; -0.98eV) 

ZnO ( 1 Σ + ; 0.0 eV) 

ZnO-(2ns; -1.32eV) 

ZnO~ ( 2Σ + ; -2.03eV) 

Figure 7. Comparison of CaO and ZnO and their anions D
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1 2 3 4 5 6 

R( Angstroms) 

Figure 8. Generalized Morse Potentials for CaO and CaO 

Zn(3P) + Q-(2P) 

Zn(1S) + 0(1D) 

Zn(1S) + 0(3P) 

Zn(1S) + 0-(2P) 

R (Angstroms) 

Figure 9. Generalized Morse Potentials for ZnO and ZnO 
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Chapter 12 

The X1(2Π3/2) and X2(2Π1/2) Potentials of the 
Halogen Monoxides: A Comparison of RKR and 

Ab Initio Results 
Charles E. Miller 

Department of Chemistry, Haverford College, Haverford, PA 19041-1392 

Experimentally determined R K R potentials for the X1(2Π3/2) 
and X2(2Π1/2) states of the halogen monoxides FO, ClO, BrO 
and IO are compared to available ab initio potentials. The 
results suggest that fully relativistic ab initio calculations have 
the capability to reproduce the experimental bond lengths, 
harmonic vibrational frequencies and fine structure intervals of 
the X O series with reasonable accuracy. The quest for 
spectroscopically accurate X O potentials will provide an 
excellent benchmark for future theoretical methods. 

This paper addresses the question of what it means to have a spectroscopic 
quality potential energy surface. The literature of the last few years contains 
numerous references to spectroscopic quality ab initio molecular potentials, yet 
the definition of spectroscopic quality necessarily depends on the resolution of 
the experimental spectrum and the theoretical calculation. The accuracy of a 
molecular potential is perhaps better characterized by asking how well it 
reproduces experimental observables. This topic is explored by comparing the 
^ι(2Π3/2> and X2(2Îlm) potentials of the halogen monoxides determined from 
high-resolution spectroscopic studies with potentials computed using ab initio 
methods. The R K R potentials determined from spectroscopic data provide 

260 © 2002 American Chemical Society 
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faithful representations of the X O experimental information and serve as 
valuable benchmarks for ab initio work. 

The halogen monoxides, X O (where X = F, C l , Br, I), represent a 
fundamental series of main group inorganic oxides that should have interesting 
chemical bonding due to the competition between the two highly electronegative 
atoms and the presence of an unpaired valence electron. They are diatomic 
molecules, so that, in principle, one may obtain "exact" quantum mechanical 
potentials from spectroscopic data inversions. Similarly, determining the 
potentials from ab initio methods should prove a tractable problem. 
Examination of the entire X O series enables one to investigate periodic trends, 
comment on structure/reactivity relationships and begin to understand the 
bonding likely to occur in larger halogen oxides. 

The high-resolution spectroscopic data used to derive the R K R potentials 
for FO, CIO, BrO and 10 has been described in a series of recent publications 
(1-4). The potentials include transitions between molecular eigenstates with up 
to 10,000 cm" 1 of internal energy (-40% of the X - 0 bond dissociation energy) 
measured with microwave accuracy. The X O ground state possesses the 
electronic configuration (ζσ) 2(νσ*) 2(χσ) 2(π>π) 4(νπ*) 3 where the values of v, w, x, 
y and ζ vary with the identity of the halogen atom. The unpaired π* electron 
gives rise to an inverted 2 Π state with the Χι( 2Π 3/2) lying below the X2(2TLm) 
state. The fine structure splitting between Xi(2n^ri) and Xt^Tlm) scales with the 
2 ? 3 / 2 - 2Pi/2 splitting of the halogen atom. A l l four members of the X O series 
examined here are good examples of Hund's case (a) coupling, the limit in 
which the fine structure splitting is much larger than the rotational constant, A/B 
» 1 . 

FO 

The Xi(2n3/2) and Χ2( 2Πι / 2) potentials of FO were derived from a combined 
fit to the existing microwave, L M R and high-resolution FTIR spectroscopic data 
(2). The data included transitions for vibrational levels up to ν = 7 and direct 
measurements of X1(2n3 /2) - Xi(2Tlm) fine structure transitions. The R K R 
potentials and associated vibrational intervals are shown in Figure 1. Figure 2 
compares the Χ 2 Π R K R potential with available ab initio potential energy 
points (5-7). 

A broader comparison with ab initio work is made in Table I where re, ωβ 

and (ûeXe values are collected. One notes that all of the calculations in Table I 
report effective 2 Π equilibrium properties. Additionally, the majority of 
calculations are unable to reproduce simultaneously the equilibrium bond length 
and the harmonic vibrational frequency. The MRCI/aug-cc-pVQZ calculations 
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100 110 120 130 140 150 160 170 
r/pm 

Fig. 1. FO 2n3/2 and 2Π1/2 RKR potentials and 
vibrational levels (2). 

100 110 120 130 140 150 160 170 
r/pm 

Fig. 2. A comparison of the FO RKR 
2TIpotential with several ab initio 

potentials (2). 
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of Leonard et al. (7) provide the most accurate characterization of FO Χ ( 2 Π) but 
closer examination of Figure 2 shows that these calculations yield a potential that 
is too anharmonic for energies above 2000 cm"1. 

Table I. A b Initio Characterization of F O Χ ( 2 Π) 

Level of Theory Tf/pm (Oe/cm1 Reference 
B3LYP/6-311++G(3df,3pd) 134.6 1120 (8) 
MP2/6-31G(d) 134.4 1542 (9) 
UMP4/5s4p2d 135.2 1468 (10) 
AUMP2/6-31G* 136.53 1092 (11) 
QCISD(T)/6-31+G* 138 1017 (6) 
QCISD(T)/ 6-311++G(3df) 135.6 1027 (12) 
CCSD(T)/cc-pVTZ 137.33 1072 (13) 
UCCSD(T)/5s4p2d 137.0 1060 (10) 
UGA-CCSD/6-31G* 138.3 1075 (14) 
UGA-CCSD/TZ2P 135.4 1085 (14) 
MRCI/aug-cc-pVQZ 135.5 1047 (7) 
MRCI/extended gaussian 136.1 992 (5) 
Experiment ( 2Il e f f) 135.411 1053.01 (2) 

C I O 

The Χι( 2 Π 3 / 2 ) and Χ 2 ( 2 Πι / 2 ) potentials of CIO were derived from a combined 
fit to the existing microwave, FIR and high-resolution FTIR spectroscopic data 
(3). The data included transitions from 3 5 · 3 7 α 1 6 , 1 8 0 isotopomers in vibrational 
levels up to ν = 2. Figure 3 shows the 3 5 C 1 1 6 0 potentials and their associated 
vibrational levels. Pettersson et al. (75) reported a tabulated set of CCI+Q 
potential energy points and these are plotted against the R K R X(2TÏ) potential in 
Figure 4. The agreement between the experimental and ab initio potentials is 
very good. The small discrepancies for energies above 4000 c m - 1 may be due to 
the extrapolation of the R K R potential to energies not included in the inversion. 

Table II compares the experimental Χ( 2 Π) parameters with available ab 
initio values; again no ab initio calculations report resolved 2 Π equilibrium 
properties. The theoretical characterizations of CIO agree much better with 
experiment than the corresponding FO calculations, probably reflecting 
difficulties with the anomalous properties of the F-O bond (see below). Methods 
employing sophisticated electron correlation effects perform very well, with the 
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140 150 160 170 180 
R(CI-0)/pm 

Fig. 3. CIO Χι(2Π3/2) and X2(2Tlm) RKR 
potentials and vibrational levels 

140 150 160 170 180 

R(Cl-0)/pm 

Fig. 4. A comparison of the RKR and 
CCI+Q potential for CIO Χ (2Π). 
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Table II. Ab Initio Characterization of CIO Χ ( 2Π) 

Level of Theory T/pm (ûjcrti1 a^Xe/cm'1 Reference 
HCTH/TZ2P 157.0 (17) 
QCISD(T)/ 6-311++G(3df) 158.0 840.9 6.7 (12) 
CCI(9)+Q 157.2 845 (15) 
CCI(13)+Q+rel 158.5 810 (15) 
E H F A C E 2 U 157.0 848.5 4.74 (16) 
MRCI/aug-cc-pV5Z 157.9 852.3 4.9 (7) 
Experiment (2II e f f) 157.01 852.3 5.528 (3) 

MRCI/aug-cc-pV5Z (7) and E H F A C E 2 U (16) calculations approaching 
spectroscopic accuracy. 

BrO 

The Xi(2Um) and Χ 2 ( 2 Πι / 2 ) potentials of BrO were derived from a combined 
fit to the existing microwave, L M R and high-resolution FTIR spectroscopic data 
(1). The data included transitions from 7 9 , 8 1 B r 1 6 , l 8 0 isotopomers in vibrational 
levels up to ν = 8. Figure 5 shows the BrO potentials and their associated 
vibrational levels. The MRCI+Q/aug-cc-pVQZ potential (no spin-orbit 
coupling) recently reported by L i et al.(7S) is compared to the X(2IIeff) potential 
in Figure 6. Note that the ab initio potential has been shifted by -1.0 pm for 
better agreement with the R K R potential. The two potentials exhibit minimal 
differences for energies up to 8000 cm" 1. This suggests that M R C I calculations 
with sufficiently large basis sets and explicit inclusion of spin-orbit coupling 
should be able to reproduce the X O R K R potentials accurately. 

Comparisons of the experimental and ab initio Χ( 2Π) characterizations of 
the potential minimum are given in Table III, including the spin-orbit state 
resolved bond lengths and vibrational frequencies determined by L i et al. (18). 
The M R C I calculations do an outstanding job of reproducing the experimental 
harmonic vibrational frequency. They also reproduce the relative values of re in 
both 2 Π states, although they systematically overestimate the Br -0 bond length 
by 1.0 pm. In fact, all of the theoretical methods overestimate the Br -0 bond 
length. Analysis of the magnetic hyperfine structure and quadrupole coupling 
parameters (see below) indicates that relativistic effects make a measurable 
impact on the BrO electronic structure; the discrepancy between the 
experimental and theoretical bond lengths may reflect a small relativistic 
contraction. 
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Fig. 6. A comparison of the RKR and 
MRCI potential for BrO X (2neff). 
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Table III. Ab Initio Characterization of BrO X CTÎ) 

Level of Theory xjpm (ùjcrn1 a^x^/cm'1 Reference 
UMP2/TZ2P 172.4 (22) 
MP2/AREP-311G** 175.0 813 (23) 
QCISD(T)/6-311+G(3df) 173.1 705.8 6.5 (12) 
CISD/AREP-311G** 176.9 741 (23) 
CCSD(T)/AN04 172.7 728 (22) 
MRCI/aug-cc-pVQZ 

2n3/2 

MRCI+Q/aug-cc-pVQZ 

172.6 728.5 3.5 (7) MRCI/aug-cc-pVQZ 
2n3/2 

MRCI+Q/aug-cc-pVQZ 172.7 730 (18) 
Experiment 

MRCI+Q/aug-cc-pVQZ 

171.72 732.88 4.649 (1) Experiment 

MRCI+Q/aug-cc-pVQZ 173.3 719 (18) 
Experiment 172.41 717.95 4.658 (1) 

IO 

The Xi(2n3/2) and Χ 2 ( 2 Π 1 / 2 ) potentials of IO were derived from a fit to the 
extensive microwave data reported by Miller and Cohen(4), augmented by the 
M O O D R transitions measured by Bekooy et al.(i9) and the fine structure 
splitting of 2091 ± 40 cm" 1 measured by Gilles et al.(20) The data included 
transitions from I l 6 1 8 0 isotopomers in vibrational levels up to ν = 13. The IO 
potentials and their associated vibrational levels are shown in Figure 7. The 
R K R and MRD-CI/RECP potentials of Roszak et al.(2i) are plotted in Figure 8. 
The ab initio potentials have been shifted by -5.0 pm in this plot for a better 
comparison with experiment. The MRD-CI calculations overestimate the 1-0 
bond length due to freezing of the iodine 4d electrons at the configuration 
interaction step (27). The diffuse 4d electrons in IO are significantly polarized 
by the electronegative oxygen atom, resulting in stronger bonding than reflected 
in the calculations. The relative agreement of the experimental and ab initio 
potentials for both the Χι( 2 Π 3 / 2 ) and Χ 2 ( 2 Πι/ 2 ) states is impressive given the 
difficulty of treating the large number of electrons in IO with an explicit 
inclusion of spin-orbit coupling in the ab initio code. The ab initio potentials 
become too anharmonic above 3000 cm" 1 but this behavior was noted for the 
theoretical potentials of all of the lighter halogen monoxides and appears to be a 
systematic difficulty. 
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160 180 200 220 

r/pm 

Fig. 7.10 Χι(2Π3/2) and Χ2(2Π1/2) RKR 
potentials and vibrational levels. 

160 180 200 220 240 
r/pm 

Fig. 8. The RKR and MRD-CI 
potentials for 10 Χ(2Π). The solid 
lines mark the RKR potentials while 

the lines with symbols mark the 
adjusted ab initio potentials from 

ReK21). 
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Table IV. Ab Initio Characterization of ΙΟ Χ ( 2Π) 

Level of Theory xjpm (ùjcrri1 ftt *e /cm'1 Reference 
MP2/6-311+G(3df) 188.8 724 (24) 
CASPT2(9,6) 187.99 652 4.76 (25) 
CCSD(T)/6-311+G(3df) 189.39 664 3.7 (25) 
MRCI/aug-cc-pVQZ 187.9 694.5 4.6 (7) 
QCISD(T)/6-311+G(3df) 

MRD-CI /RECP 

190.0 644.4 5.5 (12) QCISD(T)/6-311+G(3df) 

MRD-CI /RECP 192.2 650 (21) 
Experiment 

2 n m 

MRD-CI /RECP 

186.769 681.7 4.35 (4) Experiment 
2 n m 

MRD-CI /RECP 193.9 626 (21) 
Experiment 188.475 645.3 4.31 (4) 

Experimental and ab initio characterizations of the Χ( 2 Π) potential minima 
are given in Table IV. It is difficult to compare the calculations without resolved 
spin-orbit components to the experimental data since changing from Χι( 2Π 3/2) to 
^2(2Πι/2) increases the 1-0 bond length by 1.7 pm and decreases the harmonic 
vibrational frequency by 36 cm \ These results suggest that the two spin-orbit 
states may have significant differences in their electron configurations. This 
hypothesis is explored further in the treatment of relativistic effects given below. 

Relativistic Effects 

The intrinsically relativistic nature of the electronic structure of the halogen 
monoxides is dictated by the presence of two spin-orbit components in the 
ground electronic state. Any accurate characterization of the X O X ! 2Tly2 and 
X2 2 Πι/ 2 potentials must therefore treat relativistic effects explicitly. However, 
this requirement greatly increases the cost and complexity of the ab initio 
effort(26), resulting in few relativistic potential surface calculations such as the 
10 study by Roszak et al(21) One more frequently finds relativistic effects 
incorporated as corrections to non-relativistic energies or treated through the use 
of effective core potentials (23). 

The fine structure splittings of the X O series provide the most direct insight 
into the relativistic contributions in these molecules and the role of the halogen 
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Table V. XO Χ ( 2Π) Fine Structure Splittings 

Level of Theory At/cm'1 Reference 
FO 
MCSCF/6-31G(d,p)/SBK -185.7 (27) 
RELCCSD-T/aug-cc-pVTZ -194.6 (26) 
Experiment -196.6 (2) 
OO 
MCSCF/6-3 lG(d,p)/SBK -290.0 (27) 
RELCCSD-T/aug-cc-pVTZ -314.5 (26) 
Experiment -321.8 (3) 
BrO 
MRCI+Q/aug-cc-pVQZ -726 (18) 
Experiment -975.4 (1) 
IO 
MRD-CI/RECP -1683 (21) 
Experiment -2091 (20) 

atom spin-orbit coupling in defining their electronic structures. The fine 
structure interval separating the Χ! 2 Π 3 / 2 and X 2

 2 Π 1 / 2 states increases as halogen 
atom spin-orbit coupling increases (Table V) . The R E L C C S D calculations 
reported by Visscher et al.(26) perform remarkably well for FO and CIO, 
reproducing the experimental fine structure splittings within a few wavenumbers. 
These calculations approach the accuracy one would hope to achieve for 
spectroscopic quality ab initio potential. It would be very interesting to learn if 
the R E L C C S D calculations perform as well for values of r away from the re 

position, especially if they can reproduce the observed vibrational state 
dependence of the fine structure splitting. It is also unclear whether the 
performance of this method extends to BrO and IO where the impact of the 
relativistic effects is significantly larger. 

The performance of multi-reference configuration interaction (MRCI) 
methods for BrO(78) and 10(27) illustrate the difficulties associated with 
capturing the correct form of the 2 Π potentials as well as an accurate 
characterization of the fine structure splitting. Figures 6 and 8 show that the 
shifted M R C I calculations describe the contours of the BrO and IO potentials 
quite well. However, the calculated fine structure splittings are systematically 
low, differing by -26% for BrO and -20% for IO. Despite these discrepancies, 
it appears that M R C I methods are approaching the accuracy necessary to 
calculate high quality ab initio potentials for the X O series. 
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The magnetic hyperfine structure and quadrupole coupling parameters 
provide detailed information on the electron distributions of the X O series. The 
relationships between these parameters and various expectation values reflect 
contributions from only those electrons which contribute to the orbital angular 
momentum (designated L) , only those electrons which contribute to the spin 
angular momentum (designated S), and all electrons (designated T). The 
variable θ defines the angular orientation of the electron distribution relative to 
the internuclear axis. 

a = 2gNW„(r-*)L 

3 /3cos20-l^ 
2 \ r j 

eQqx=eQ[ -3 ) 

(1) 

β β 9 2 = - 3 β β ( — 5 -

The experimentally derived expectation values for all four X O molecules 
are summarized in Table VI. The spin density on the halogen atom is derived by 
the ratio of the molecular and relativistic atomic radial and angular expectation 
values. The spin density on the F atom in FO is anomalously low, 20%, a 
characteristic that is also reflected in the unusually small dipole moment for this 
molecule. (5, 7) The spin densities found on the halogen atoms in CIO, BrO and 
IO are between 37 and 39% and exhibit little dependence on the identity of the 
halogen atom. The spin densities calculated using non-relativistic radial integrals 
for the evaluation of the halogen atomic expectation values lead to an unphysical 
increases in the calculated spin density on the halogen atom, reaching 62% for 
IO. 

Another indication of the importance of relativistic contributions to the 

bonding in the X O series is given by the trend in ^ Ψ 2 ( θ ) ^ , the probability of 

finding the spin inducing electron at the halogen nucleus. Table VI shows that 
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there is a clear periodic decrease in this expectation value, passing through zero 
and reaching a negative value for 10. Examination of the expression for the 
Fermi contact term, bF, from which this expectation value is derived shows that 

should be a positive number since it is the product of nominally positive 
parameters. Many authors attribute such unphysical behavior to spin 
polarization but it appears quite consistent with the other results from the X O 
series, demonstrating the importance of relativistic corrections. Note that the 
angular distribution of the electrons which contribute to the molecular spin, 

, shows a very reasonable decreasing trend through the series without 

any unphysical behavior, most likely due to the contraction of the halogen atom 
ρ-π* orbital to optimize overlap with the oxygen ρ-π* orbital. 

Table VI. Derived XO Χ ( 2Π) Electron Distribution Expectation Values 

Molecular FO 35O0 79BrO 10 
Values (Ref. 2) (Ref. 3) (Réf. 1) (Ref. 4) 

10.452 18.232 35.686 61.676 

10.485 17.583 32.310 48.789 

(<¥\0))s 
0.3300 0.2461 0.0964 -0.7170 

( S , n ' e ) s 

0.8383 0.8163 0.7982 0.7612 

Atomic X XO/X X XO/X X XO/X X XO/X 
Values Calc. Ratio Calc. Ratio Calc. Ratio Calc. Ratio 

51.5 20.3 46.9 38.8 97.9 36.5 162.8 37.9 

(Λ 51.1 20.5 45.7 38.5 86.5 37.4 122.2 39.9 

-0.018 -0.056 -0.500 -1.72 

The axial and non-axial quadrupole coupling parameters, eQqi and eQq2, 
provide a measure of the electric field gradient at the halogen nucleus. This very 
specific electron distribution information also bears the signature of relativistic 
effects. The subtle differences in the electronic structures of the Χι 2Π3/2 and X 2 

zTim states produce changes in the value of eQq\. These changes have been fit 
in the analysis of the CIO, BrO and IO spectra using the parameter eQq$. 

There are two major contributions to eQq$ : a structural component 
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A 

AeQqx(struc) = -eQqim ^ L 

•Ml 
related to the differences in the equilibrium structures of the Χι Π 3 / 2 and X 2 

2Tlm states and a relativistic correction 

AeQqx (rel) = * L J . 
•3C + + 

obtained from the appropriate relativistic integrals ( i) . The calculated 
contributions to eQqs for CIO, BrO and IO are collected in Table VII along with 
the fitted values of eQqs. These results show that the predicted changes are of 
the same sign and order of magnitude as the fitted values of eQqs- Additionally, 
one notes that the relativistic contribution is systematically a factor of three 
larger than the structural contribution. These trends hold despite the fact that the 
changes vary from 0.4 to 119 MHz. The increasing deviation of the calculated 
and observed eQqs values as X changes from CI to I may reflect the increased 
mixing of neighboring Σ + state(s) into the X 2

 2Tlm configuration (4), although 
this explanation awaits direct theoretical confirmation. Nevertheless, the good 
agreement between the calculated and experimental eQqs values supports the 
assertion that relativistic effects play an important role in determining accurate 
potentials for the X O molecules. 

Table VIL Structural and Relativistic Contributions (MHz) to eQqs 

XO A(struc) Mrel) A(total) eQqs 
CIO 109.74 0.09 0.32 0.41 0.37 
BrO -769.76 -4.0 -10.1 -14.1 -21.82 
IO 2292.71 38.5 81.4 119.1 198.14 

Conclusions 

This paper has summarized the current state of knowledge concerning the 
Χι 2 Π 3 / 2 and X 2

 2 Π 1 / 2 potentials of the halogen monoxides. A comparison of 
R K R and ab initio potentials shows that the theoretical potentials reproduce the 
experimentally derived potentials quite well but generally lack spectroscopic 
accuracy. Recent advances in relativistically corrected M R C I and CCSD 
methods show great promise for achieving accurate characterizations of the X O 
potential curves for the entire range of energies up to the dissociation limit. New 
experimental data has also provided detailed information on the electron 
distributions around the halogen nucleus and the impact of relativistic effects on 
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these distributions. The combination of the R K R potentials and electron 
distributions provide a valuable benchmark with which to assess the performance 
of future ab initio calculations on these systems. 
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Chapter 13 

Symmetry in Spin-Orbit Coupling 
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University of Tokyo, Tokyo 113, Japan 

A thorough review of the symmetry properties of the spin-orbit 
coupling operator and its matrix elements is presented. 
Various consequences of symmetry upon the practical 
calculations of spin-orbit coupling matrix elements at both 
point and double group level are illuminated. A parallelisation 
scheme and various steps unrelated to symmetry toward 
making the calculations more efficient are discussed. Tests of 
scalability of the code as implemented into the distributed 
version of G A M E S S are presented. 

Introduction 

Recent progress in studying molecular dynamics involving states of different 
multiplicities, such as conical intersection studies (1,2), relies to a large degree 
on the ability to calculate spin-orbit coupling matrix elements. Conventional 
scalar (spin-independent) calculations involving average-sized elements, such as 
those in the 4th or 5th row of the Periodic Table, can be greatly improved in 
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terms of energy level splittings by using either perturbative treatments involving 
spin-orbit (SO) coupling in a manner of (3,4) or non-perturbatively, known as 
SO CI (configuration interaction) (5,6). There are many different techniques 
available to obtain numerical results (7,8,9,10) for a given system. The study of 
SO coupling (SOC) in molecules is relatively new are but a few books and book 
chapters are available (11,12,13) and many references can be found in the 
bibliography by Pyykkô (14). 

A n efficient spin-orbit coupling calculation will take advantage of symmetry 
and various computational techniques to improve the efficiency. This paper 
begins with a consideration of the applicable symmetry rules. This will be 
followed by a discussion of the computational aspects of the spin-orbit coupling 
matrix elements. The symmetry rules elucidated in this work are applicable to 
the recently developed relativistically transformed spin-orbit coupling operators, 
provided that the rotational properties of the transformed operators are 
unchanged, which is the case for transformations explicitly dependent upon 
momentum p 2, (15,16, 17). 

The number of non-zero elements that must be calculated can be greatly 
reduced by predicting ahead of time which matrix elements are zero due to 
symmetry. The general SO matrix element can be written as: 

<aRSMs I H s o I aTi'S'Ms' > (1) 

where the spin-orbit coupling part of the Pauli-Breit Hamiltonian (18) spin-orbit 
coupling H s o contains both one and two electron operators. The state \&nSMs> 
contains the symmetry labels of the wavefunction obtained from a conventional 
spin-independent calculation: Γ denotes the irreducible representation (irrep) of 
the point group G of the molecule, i distinguishes degenerate components of 
Γ, # distinguishes equivalent irreps, S(S+1) and Ms are the eigenvalues (in 
atomic units) of the spin operators S2 and Sz » respectively. 

The matrix element in eq 1 represents a relativistic spin-dependent 
correction. Since the conventional scalar Hamiltonian commutes with S and Sz, 
one significant use of symmetry is to apply the Wigner-Eckart theorem (19). 
Secondly, H s o commutes with a set of rotation and reflection operators, applied 
to both orbital and spin variables, forming the double group (21) G, just as the 
scalar Hamiltonian commutes with a set of space rotations and reflections 
forming group G. The eigenvectors of the matrix representation of H s o in the 
basis \ariîSMs> can therefore be classified according to the irreps of the double 
group. Linear combinations of the original states \arUSMs> with eigenvectors of 
the H s o matrix as expansion coefficients form states with a distinct double group 
symmetry in which H s o is diagonal. The following discussion is intended mainly 
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for the finite groups, and, although it is valid for arbitrary molecular or atomic 
symmetry, we do not explicitly use the notation of the groups with infinite 
rotation axes and conserved angular momenta. The exact type of the 
conventional scalar wavefunction is irrelevant as long as it can be described by 
the labels specified above. A notable exception is the unrestricted Hartree-Fock 
(UHF) wavefunction, where the rules involving spin angular momentum 
symmetry are not applicable because the wavefunction is not an eigenfunction of 
s2. 

It should be noted that most of the symmetry rules presented here have been 
known but not gathered together prior to this work (see, for example, (2,20,21)). 
Despite the fact that many papers on SOC give the selection rules for particular 
point groups, there appears to be no general formulation useful from both 
theoretical and algorithmic point of view, in particular formulated for the scalar 
wavefunction as it comes from spin-independent methods. In practice it is 
convenient to use such wavefunction as the formalism to compute SOC is similar 
to spin-free computations with simple spin dependence so that even the 
alternative approaches aimed at making the SOC matrix real or using time-
reversal symmetry often reduce to the computation of SOC in the basis of 
wavefiinctions obtained from spin-independent methods. In addition to 
consideration of symmetry, methods for improving the efficiency of spin-orbit 
coupling calculations, including the use of parallelisation, are presented. 

The Wigner-Eckart Theorem 

The theorem proved to be very useful for SOC calculations as applied by 
McWeeny (22), states that: 

(oti\fk\aT) 
(ajm\Tqyfm') = <j'Xm\q | y , m ) N / / 

V A / + 1 (2) 

Λk Λ 

where Τ is an irreducible spherical tensor operator of rank k, Tk is the so 
called reduced tensor operator, (j',k,m\q%,m) are Clebsch-Gordan coefficients 
(assumed below to be real), \ajm> are eigenvectors of angular momentum 
operators J2 and Jz and a is used to denote any other labels. Now, H s o 

transforms as ^ ^ . or for the spin selection rules (11) as 

(L · S) = L 0 S 0 - (L + S. + L .S + ) / 2 and J± = +(jx ± Ûy y The latter can be seen 

from the explicit separation of spin and orbital operators in the second quantised 
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formalism (23). Taking Τ* to be S+,SQ, S_ where k=l and #=1,0,-1, it is 

therefore possible to rewrite the matrix element in eq 1 as: 

* ' ' q=-l * (3) 

where the numerical constants are included into the operator transforming as 

angular momentum tq and the vector spin operator S has been reduced to the 

scalar operator S. The sign = is to be understood as "transforms as". For 5=0 
and S'=0 the coefficient (S',l,0t0\St0)= 0, so it follows that: 
(a) A matrix element between two singlets is zero. 

Secondly, using the property of the Clebsch-Gordan coefficients 

(S,l,Afs,4\F',Ms> 0 if IS-S' |>1 or Ms+q*Ms\ one obtains: 

(b) The SO matrix elements are zero unless \S-S'\ <1 
Furthermore, 
(c) at most three elements need to be explicitly calculated, given S and S' 

<anSMs,-l\nJaTi,SMs'>=(S\lMs\'l\SMs^^ aTVS'>(-l) 
(4) 

<arnSMs'\Û.mI aTVS'Ms'> = (S\lMs,0\SMs)«*riS |L0S | aTi'S'> 
(5) 

<anSMs'+l\nj aTVSMs>MS\lMs\^l\SMs^l)<^nS\L_S\ aTi'S'>(-l) 
(6) 

The remaining elements are: 
1) zero if | M r M 5 ' | > l 
The Hso matrix is tridiagonal (diagonal being defined as M$=Ms'). 
2) calculated for an arbitrary Ms by using one of the basic three expressions in 
(c) e.g.: 

<aHSMs - i | H s o I aTi'S'Ms > = (S',1, Ms -l\SMs -1) 

x <aRS\ L^SI a>riV>l{S\lMs\-l\$Ms'-l)(-l) (?) 

where the reduced matrix element is calculated from the above defining relation 
(for M*'). 

It should be noted that some Clebsch-Gordan coefficients are equal to zero, 
for example, (1,1,0,0|1,0) and (2,2,0,0(1,0). It is important to keep this in mind 
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when actually implementing the Wigner-Eckart usage of the reduced matrix 
elements. It is not possible to use Ms=Ms'=0 to get the reduced matrix element 
in these cases as it would lead to division by zero. Using the largest possible Ms, 
that is, MS=S, MS'=S' , however, always leads to non-zero Clebsch-Gordan 
coefficients. 

Hermiticity and Time reversal, States Represented by Real 
Valued Wavefunctions 

If one uses states represented by real valued wavefunction, it is possible to 
reduce the number of matrix elements one must explicitly calculate from three 
to two. Note that this corresponds to calculating matrix elements of the three 
operators represented schematically by LxS,LyS,LzS-

Elements along subdiagonals are bound by a simple relation. To see this, 
consider states of different multiplicity and use explicit form of the angular 
momentum operators (18) in order to see the relations between real and 
imaginary parts of the two matrix elements below: 

( a O S , M s \Hso\aVrs+lMs +1> 

= (S + U , M S + 1 , - ΐ | 5 , Μ 5 ) ( α Γ / 5 | £ + 5 aT'i'S ή-ή(-ΐ) 

= (5 + l , l ,M 5 +l , - l |S ,M 5 ) ( - l ) 

χ [- ΐ(άΓϋφχ p\ S j aT'i'S + H)i(^iSp χ p\ S | aT'i'S+l^J(-l) 

(8) 

( a n s - M s \Hso\aT'i'S + 1 -Ms - l ) 

= (S + 1,1,-MS - ll\S - M s ) [ α Γ ι ΐ | £ J \aT'i'S + l)(-l) 

= (S+1,1,-M5 - l , l | S , - M s ) 

x i(ans|[r x p\ S^aT'i'S + ή- i(-i)(aTiS^ χ p \ S^aT'i'S + 

(9) 
It can be proven generally that (S+lJMs +l,-l\S,Ms> (S+l,l,-Ms-l,l\S,-Ms) 
(Appendix III), so that by comparing the right-hand sides of eqs 8 and 9 it can be 
seen that their left-hand sides are bound by the relation: 

<aHS M s | H J aTÏS+lt Ms +i>=<tf/1S ,-Ms | H s o | aTi'S+h -Ms -1> 
(10) 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

3

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



281 

Similarly, for states of the same multiplicity: 

(aTiS9Ms -l\Hso\aT'i'S,Ms) 

= (SXMS -l\S9Ms -l)(c£is\LJ at'i'Sy-l) ( 1 ^ 

= {SXMS , - 1 | S , M s - 1 ) H ) 

{aTiS,MS\HS0\aT'ÎSMs - l ) 

= (SXMS - 1 , ΐ | 5 , Μ 5 ) ( α Γ ί 5 | £ _ 5 α ΐ " ί ' ^ ( ~ 1 ) ( 1 2 ) 

= ( S , 1 , M S - 1 , 1 | S , M 5 ) 

χ |̂ - ifaTiSp χ S |αΤΤ^ - Ι(-/)̂ ΟΓ«|[Γ Χ ρ\ s\aYi'S^-\) 

However, (SJMs>-l\$,Ms-lX-l) (S,7,M 5 -7,715, Ms) (Appendix III), so by 
comparing the eqs 11 and 12 it is seen that: 

<aHS Ms -7| H s o I aTi'S Ms >=<a>BS Ms | H s o | aTVS Ms -7>*(-7) (13) 

For states represented by real-valued wavefunction, only the diagonal and one 
subdiagonal need to be explicitly calculated. The other subdiagonal is readily 
calculated as the complex conjugate (different multiplicities) or negative 
complex conjugate(same multiplicities) of the first subdiagonal. 

Hermitian Character of H 

Consider <a-nSMs\ H j aBSMs> <χ <a-nSMs\ LS \ anSMs>. The matrix 
element must be real since the operator is Hermitian, but the angular momentum 
operator is proportional to i , imaginary unity. So, provided that real basis 
functions are used, this matrix element is purely imaginary. This implies that: 

<anSMs\ H s o \crnSMs> = 0 (14) 

Using the previously obtained eq 9 for α=α\Γ=Γ,ί-ϊ 

<anSMs-l\ H s o | anSMs>=<anSMs\Ûm\arnSMs-l> (-7) 
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Since H s o is Hermitian, 

<anSMs-l\ YLjanSMs>=<anSMs\ Hj#/7SM5-7>* 

This implies that 

<anSMs-1\ WriSMs>=<anSMs\ H s o \#nSMs -1> = 0 (15) 

From eqs 14,15 and 7 one concludes that: 
Diagonal matrix elements (Le. bra equal to ket) are zero provided that the state 
is represented by a real-valued wavefunction. 
The same is true for states represented by a purely complex wavefunction. 

Time-Reversal Symmetry 

It can be proven generally (19) that the matrix elements of operators 
invariant under time reversal (such as H s o ) in the time-reversal invariant 
basis set are real, which can be used to find a set of states in which the SOC 
matrix is real, a matter of practical importance for large spin-orbit CI. The 
wavefunction obtained from a spin-independent calculation, denoted by 
\anSMs>, in general is not an eigenfunction of the time reversal operator and 
thus this symmetry can be used only for certain linear combinations of such 
wavefunctions. The details go beyond the scope and aim of this paper and can be 
found elsewhere (5,6,24). 

Double Group Symmetry 

As is well known, in order for a matrix element to be non-zero, the direct 
product of irreps to which bra, ket and the operator belong must contain the 
totally symmetric irrep. This is a consequence of the requirement that the matrix 
element taken as an integral over space variables and as a scalar product for the 
spin coordinates be independent of an arbitrary rotation of the entire system, that 
is, 

(ψΓι J Α Γ Α | Ψ Γ 2 ) =0, unless Tj ® Γ Α ® Γ 2 contains the totally symmetric irrep. 

(16) 
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Since H S O transforms as a scalar product of two pseudovectors L and S, it 
transforms as a scalar, or in other words it belongs to the totally symmetric 
irreducible representation. Thus the requirement for the matrix element to be 
non-zero is: 
\χΓι \g)xr* (g) = δΓ r <=> Γ = Γ ' w n e r e / * f are the characters and δ is the 
g*G 

Kronecker δ symbol. 
The conventional scalar wavefunctions will mix in general into several 

irreps of the double group, thus the matrix element in eq 16 is zero unless there 
is an irrep of the double group to which both bra and ket belong. 

The procedure for determining the double group irreps to which the scalar 
wavefunctions belong will be outlined below. This procedure can also be 
reversed to find bases of the irreducible representations of the double groups as 
well. Since the number of electronic states included in the SO calculation is 
usually small, and in order to take advantage of conventional algorithms for the 
matrix element calculation, the states obtained from spin-independent 
calculations are used as a basis. Consequently, the H s o matrix in this basis is 
diagonalised (as opposed to using the symmetry adapted states as the basis in 
which H S O is diagonal). 

In the discussion below, bars above symbols (eg G) denote double group 
entities. The following projection operators extract the functions belonging to 
the irrep of the double group: 

where 21 is the rotation operator representation of the double group 

elements, D[k(~g) are the diagonal elements of the matrices of the irreps of G, 

Πψ is the order(degeneracy) of Γ , is the order(size) of G. The condition for 

a state \aRSMs> to mix into row k of an irrep Γ is 

Before explicit formulae are obtained, it should be noted that generally for 
non-Abelian groups when doing quantum-mechanical calculations, one does not 
obtain states with a pretabulated irreducible representation row-symmetry. 
Unless special measures are taken, row symmetry specific components of 
degenerate irreps mix with each other. Thus, instead of having a distinct row 
label a more general case will be considered, namely with label j which 
simply numbers degenerate components and does not correspond to row 

(17) 

Ρ/ I oTiSMg >Φ 0 (18) 
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symmetry in the sense of transformation properties with pretabulated matrices. 
The case with the row symmetry present will be derived as a special case at the 
end. 

A state with mixed row symmetry (i) can be written as 

\arjSMs) = 2^4aTiSMs) 
i=l 

Next, consider the relation 

P?\dTjSMt>=0 

= î > » Ë ^ O ? ) t DS

MM (g)aTi'SMs') = 0 

(19) 

(20) 

Tf\crjSMs) = £ a ^ | a T / 5 M s ) 
«-i (21) 

where Z>rand D$ are the matrices of the irreducible representations of groups G 
and Kh, respectively, and α% are the coefficients. It should be noted that Dr(g) 
does not depend on the colour (colour can be defined as the phase δ in the Euler 
angle representation: e.g., white colour set to δ=0 and black to δ=2π as added to 
Euler angle a, spin-wavefimction changes sign when rotated by 2π) of g as the 
states \arIjSMs> are classified in the group G (or in other words, as single-valued 
representations of the double group). The atj are unknown and form linearly 
independent vectors at Thus the eq 20 becomes: 

if ι OTJSMs >=^Σ ϋζ (g)% £ D^(g) Σ ^(gictrsMu-o 
ng seG i=l ι" M I =-S ' ' (22) 

Using the linear independence of \an'SM'^) , the individual coefficients are zero 

for all /'and Af/. 

V i ' , M's: l£'(8Vft<g)&:Ui <*) = 0 

Finally, using the linear independence of ah the individual coefficients for all /, Γ 
and My'are zero: 
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VM',M/ : Σ θ Γ ( Ϊ ) ^ ω ^ · Μ ( J ) =0 
UG · · (24) 

Therefore, 
2ZDi\g)Dr(8)*Ds(g)=0 ( 2 5 ) 

geG 

in terms of the tensor product for all Ms, and one can replace the if matrix by 
the Ms -column of if for a specific Ms. This is easily identifiable as the relation 
stating that the product of two irreducible representations Γ and S does not 
contain Γ . 

The final result given in eq 25 is easy to apply. It can be readily 
deduced that the states of odd 2S mix into double-valued irreps Γ only, and 
correspondingly even 2S states mix into single-valued irreps only. This follows 
from D^fg) = ±D^k(g) where the plus/minus refer to single/double valued 
irreps respectively; and from D^g) = ±D s(g) where the plus/minus refer to 
even/odd values of 2S, respectively. Note that g and g differ by a rotation of 2π 
about the z-axis (in the Euler angle representation). 

Thus states of integer and half-integer S do not mix with each other. 
Eq 25 can finally be simplified to: 

£ D L * ( g ) D r ( g ) x D s ( g ) = 0 

*o (26) 

Note that the sum runs over the white elements of G (i.e. over a subgroup of G 
isomorphic to G). In the case of distinct row symmetry i , the direct product Dr χ 
if is replaced by Df xlf, where D[ stands for i-th column of D . 

Matrices D*tg), also known as Wigner functions, are straightforward to 
calculate. Parametrisation of g by the three Euler angles is convenient (see 
Appendix I). 

To summarise briefly, the double group selection rule is: 
<ornSM s I H s o I a T ' i , S r M s ' > is zero i f there are no Γ and k such that 

Σ ° ΐ ( s )D r (g )*D s

M s (g )*0 and 

£ D £ * ( g ) D r ( g ) x D £ . 0 > ) * 0 
* e G ' (27) 
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where DMs is the Ms column of LP. In addition: S and S' should be both integer 
or both half-integer and Γ single or double valued respectively; Ό\ is to be 
used in place of DT if row symmetry is present. 

As was pointed out earlier, only half-integer spins mix into double-valued 
irreps of G, thus double group symmetry per se is used only for half-integer 
spins. 

Point Group Symmetry 

A somewhat different kind of selection rule can be derived from a 
combination of the Wigner-Eckart theorem and point group symmetry. After 
application of the Wigner-Eckart theorem one is left with matrix elements of the 
type: 

<arnSMs'-q\ H s o \aTVS'Ms'> ~ <anSMs'-q\ LqS\ ûrTïS'Ms'> 

This matrix element is equal to zero unless Γ χ Γ Ι ? X T ' contains the totally 
symmetric representation ofG. Lq itself transforms as linear combinations of the 

pseudovector components Lx,Ly,Lz (which transform as x,y,z except that they 

are even under inversion). Depending on implementation of actual calculations, 
it may be beneficial to explicitly rewrite the matrix elements in terms of 
Lx,Ly,Lz, because for the more common groups it is Lx andLy that have unique 

irrep labels rather than and L_. 

Comparison of the Point and Double Group Selection Rules 

Even though the point group rules may seem less powerful due to the 
absence of spin dependence, they are in fact more restrictive and useful than the 
double group rules. There are two reasons for this: the spin dependence is 
actually not neglected, but taken full advantage of by means of the Wigner-
Eckart theorem, and secondly the basis set in terms of which the rules are 
formulated (scalar wavefunction) is naturally suited for point group rules. The 
bases of the irreps of the double groups are often built from several scalar 
functions, so the latter functions themselves are unwieldy and a poor choice for 
the rules in the double group. 

A pictorial example of this is a matrix element between two states having 
the same point group symmetry and spin (both S and Ms) (equivalent terms), e.g., 
<7-5A;(M5=0)| H s o \2-3Aj(Ms'=())>. Such a matrix element is not predicted to be 
zero according to the double group rules, as the radial and the spin symmetries 
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are identical, however in the point group the symmetry rule reduces to the 
symmetry of the component of Lz. This deems the element equal to zero in those 
point groups in which Lz belongs to an irrep other than the totally symmetric one 
(e. g., in C 2 v ) . 

Computational Speed-up 

The symmetry selection rules can be used in several different ways. First, 
let us consider techniques to accelerate scalar (single CPU) code. As the size of 
the active space and the level of electron correlation increases, the number of 
either determinants or configuration state functions (CSFs) increases 
dramatically. The main computational difficulty in a SOC calculation usually is 
confined to having to deal with a large CI expansion. Although working in the 
determinant basis set has its own benefits, such as its relative simplicity and 
efficiency at the same time, the smaller expansion in the CSF basis can prove to 
be a significant advantage. Most techniques described below are applicable to 
both types of wavefunction expansion, the main difference being that CSFs are 
eigenfunctions of S2 and Sz, whereas determinants are eigenfunctions of Sz 

only. 
The approaches presented below are incorporated into the G A M E S S 

package (25) as modifications of the original SOC code written by Koseki (9), 
based upon graphic unitary group approach (GUGA) (26) used to generate CI 
wavefunction. Perturbative treatment is assumed whereas a recent paper by 
Yabushita et al developed spin-orbit CI method using G U G A (5). 

For a CSF-driven algorithm, a SOC code contains a loop over pairs of 
CSFs. The following criteria can be used to avoid calculating the matrix element 
between two CSFs. 
a) Overall number of open shells: 
G U G A provides the number of unpaired electrons for each CSF. These numbers 
for the two CSFs cannot differ by more than 1 (one-electron H s o ) or 2 (full 
Pauli-Breit Hamiltonian). 
b) Orbital occupancies: 
Each CSF has a unique orbital occupancy, consisting of determinants that differ 
only by spin occupations. The maximum allowed number of orbital 
discoincidences η is determined by the structure of the operator: n=l if only one-
electron terms are included and n=2 for the full Pauli-Breit Hamiltonian. To 
make this heavily used part of the code more efficient, the orbital occupancies 
(which can be 0, 1 or 2 for each orbital) are packed into integer arrays, 2 bits per 
orbital. To determine the number of occupancies exclusive or (XOR) is 
performed, in the same fashion as developed by Furlani (10). The resultant array 
is split into 2-byte integer numbers. Each of these numbers is taken as an 
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argument to a pretabulated function giving the number of discoincidences. The 
total number of discoincidences is then obtained as a sum of the values of the 
precalculated array over all 2-byte numbers. This reduces the linear dependency 
on the number of orbitals to a logarithmic dependency. 
c) If the absolute value of the product of the two CI expansion coefficients is 

smaller than some threshold value (given by the user), there is no need to 
proceed further. 

d) Symmetry selection rules. By using the selection rules discussed above, the 
calculation of matrix elements that are zero by symmetry can be avoided. 
The parallelisation of this scheme can be achieved quite easily by dividing 

the loop over CSFs into all computer nodes available for the parallel run. Each 
node will then calculate its share of the CSF pairs, and the resultant matrix 
elements are then summed over all nodes, using static load balancing to avoid 
either dynamically retrieving or complete in-core storing of CSF occupations and 
coefficients. The integrals are either completely or partially kept in memory, 
depending upon the amount of memory needed/available. A few timings 
obtained with the parallel version of G A M E S S will be presented below. A 
parallel implementation of spin-orbit CI also exists (27). 

As a test case a calculation of ArO has been chosen. A l l calculations have 
been run on the Scalable Computing Laboratory 64 node Pentium cluster A L I C E 
(28). Each node is a 200 M H z Pentium Pro with a 2GB hard disk and 256MB 
R A M . A l l timings are wall-clock and are given in seconds. The basis set (29,30) 
used is Ar=(lls,7p,ld)/[4s,3p,ld], 0=(9s,5p,ld)/[3s,2p,ld], the orbitals were 
optimised with 14 electrons in 8 orbitals complete active space self consistent 
field (CASSCF) method and finally single and double (SOCI) excitations into 
the virtual space were performed. The internuclear distance was set29 to 1.9844 
Â. The following states were included in the spin-orbit coupling study: 
1-ιΣ+, 'Π, *Δ, 2- ! Σ*, 3 Π , 3 Σ". There are 145776 singlet and 232848 triplet CSFs. 
CSFs were generated in Q symmetry to obtain all states at once, and SOC and 
ordinary integrals were calculated in C 2 v symmetry. 

The scalability of SOC is given in Figure 1. Two-electron SO integrals 
in the A O basis as well as transformations into the M O basis are performed on 
each node independently to reduce the amount of communication traffic. As seen 
from the figure the scalability of the full Pauli-Breit Hamiltonian is the best. The 
overall scalability is dragged down by the CI code. 

Summary and conclusions 

General group-theoretical methods have been used to derive important 
selection rules for spin-orbit coupling matrix elements. Whereas some of the 
results have been known prior to this publication, some useful new procedures 
have been introduced, and as complete a symmetry analysis as possible has been 
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presented. Selection rules for the spin-orbit coupling matrix elements have been 
given in terms of both double and point groups. The computational procedure for 
an efficient spin-orbit coupling code has been described and the results of 
parallel tests have been presented. 

A typical spin-orbit coupling matrix is given in Appendix IV. 
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Appendix I. Wigner Functions 

Wigner functions in the Euler angle representation can be calculated as 
follows (31): 
DL>(a>frY) = exp(-ima-imy)dJ

mm,W 

< M = (-iy-#VO'+ m)\(j-m)!0*+ m')KJ-"0! x 
(Zo) 

^ m i n ( è j - m ' ) k\(j-m-k)l(j-m'-k)\(m+m' + k)\ 

Appendix II. Arbitrary CI Wavefunction Symmetry Labelling 

While this labelling is a technical issue, it appears sufficiently important to 
be briefly outlined. The necessity for this lies in the fact that especially for non-
Abelian point groups, existing CI implementations are not always able to assign 
symmetry labels to the states obtained in a determinant-based calculation, such 
as CASSCF or MRCI . In particular, the non-Abelian G U G A approach does not 
appear to be widely used. Consider a wavefunction 

/ (29) 
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where D/ are the determinants and C/ the expansion coefficients. It is assumed 
that molecular spin-orbitals ψ=φο~ in the determinants are already symmetry 
labelled. For simplicity the spin part σ is omitted in the equations below, except 
where relevant. The statement that Ψ does not belong to row a of irrep Γ is 
equivalent to: 

ρΓΰψ = Q w ] j e r e /> i s a projection operator. (30) 

ρΓΎ^Σηί'απ,Σε,άεΗφν..φΝ}ι = ^Σθί'(8)Σ^ΠΤ!φι...ΤίφΝ}1 

I 
(31) 

Unless special measures are taken, φ will usually be labelled without a 
distinct row symmetry. This corresponds to mixing degenerate components, such 
as px and py for atoms. In order to find their transformation law, they can be 
decomposed into linear combinations of row-adapted functions. In the following, 
k^ below simply numbers degenerate components, e. g. one can assign k=l for an 
orbital φ= px+py and k=2 for pxpy so k=l does not imply purepx or py% 

τ*φΓ/' =ΣαΧ Σ°ΓΜΣ(α-%<ρΓ/μ 

α = 1 α '=1 Ατρ, =1 

D'r"(g) = fl

JDr"(^a (32) 

where 0 transform according to row a of the irreducible representation Γ and the 
coefficients "a" will be found later. D' gives the transformation law in the new 
basis. 

(33) 

Γ k ' Τ k ' 

Some of the determinants det{<JV 1 ...TgÇN

N N }I are linearly dependent. 

These are only the determinants which include degenerate MO's belonging to the 
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same and only for certain combinations of spin functions, e.g., for doubly 
degenerate MOs ά&{...φχαφ2α...} and det{...ç>2a^a...} anse from 
Τξά&ί{...φμφ2α...}' These linearly independent cases are small in number and are 

readily accounted for. 
The weight of the irreducible representation Γ row a in the wavefunction Ψ 

is: 

(34) 

The sum over / runs over all determinants in Ψ and the sum over / runs over 
determinants generating linearly dependent determinants in Dt upon application 
of Tg. Unprimed indices correspond to orbitals found in DI and primed indices 
are from Dj. [-1]IJ arises after an even 1 or odd (-1) permutation producing / 
from J. 

Determinants to be included in the J sum are easy to identify, because they 
have the same orbital and spin occupancies except for one possible degree of 
freedom: MOs belonging to a degenerate Γμ can replace one another. So a 
determinant containingpX9 det can be reproduced upon rotation from a 
determinant withpy in place of p^ det {...pr..}, and identical in other orbitals. It 
should be noted that is understood to include a label distinguishing equivalent 
irreps, such as 2 in 2px, so that 2px does not interact with 3py in the above sense. 
For determinants containing a degenerate irrep, for MOs multiplied by the same 
spin function it is necessary to add determinants to J obtained from those in / by 
a permutation. This can be seen to correspond to restricting J to only 
determinants found in / and replacing the product of D' matrix elements with det 
D'r. Since the choice of J for a given / is crucial, the following examples should 
clarify the choice of / . 

Consider a wavefunction consisting of only three determinants in C 3 v (case 
A) , for any spin occupancies: 
Dj=det{lailej2 aj 
D2-det{l alle22 aj 
D3=detfl aile23 aj 
The phases and determinants to be included into the / sum are given in Table I; 
/, / and / - / ] u are defined as in Eq. 34. 

Another example involving negative phase might be (case B): 
Όι-άβί{1αια1βίβ62β} 
D2=det{la1arle2fl2 ayff} 
D3=det{laj/ffle2/02 a\a] 
(Dv ̂ detlla&leifiejfi}) 
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The phases and determinants are given in Table II. 
Finally to find the necessary coefficients a, the following procedure can be 

used. Application of PTa on the set φη produces either zero if φΥΙί has no 
projection in the space of Γ,α or φΓα otherwise and φΓα can be normalised for 
convenience. Functions φΓα can be explicitly written in terms of atomic orbitals. 

Λ ) = Σ ^ ( Γ - / ξ ) 
pst \JD ) 

/>) = Σ Φ Μ ^ > 

The index ρ corresponds to / (angular momentum quantum number) in case 
spherical harmonics are used or to the rank of the Cartesian direct product tensor 
(i.e., 1 for x, 2 for xy, z2 etc) for real Cartesian basis sets, s being 
correspondingly m or denoting a component of the tensor of rank p. Rt stands for 
Cartesian coordinates of atom t. 

pst ng pst g 

ng p*< i * (36) 

Matrices F(g) give the transformation law for χ. They are the Wigner 
functions for^ having angular dependence of spherical harmonics. For Cartesian 
angular dependence they can be explicitly written down with some algebra as 
linear combinations of Wigner functions. 

n — 'PS*' 
ng 8 s ( 3 7 ) 

where g ' \ is understood to mean atom t' such that R^g^Rf. 
Using the orthonormality of ( φ Γ α | φ Γ α ) = Saa, 

tt=l 

4=<0Γ αΚ*) (38) 

Appendix III. Clebsch-Gordan Coefficient Relations 

The following relations used above can be readily proved by using the 
properties of 3j Wigner symbols (19). 
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Table L Determinants and phase factors for Non-Abelian groups, case A. 

/ J N1IJ 

1 1 1 

2 1 

2 1 1 

2 1 

3 3 1 

Table II. Determinants and phase factors for Non-Abelian groups, case B. 

/ J 

1 1 1 

r -1 

2 2 1 

3 3 1 
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f S l S 

-M. 1 M,-I 
( - î ^ ' - ^ s + î H ) 2 

ι -MJ 

- { - î r ^ ^ j J _*J—Î?.l.Mf-l.l|s,Mt) 
And similarly, 

(5 + l J , M i + l , - l l S ) M J ) = ( - l ) i + 1 - 1 + M - V 2 5 T ï f 5 + 1 1 5 } 
VM. + l - 1 - A f J 

(s + U , - M J - l , ] | S ) - M j = ( - i r - 1 ^ V 2 T 7 ï f S * \ J f )= 
V - M S - 1 1 MJ 

IA/,+1 -I -MJ 

{Ms+l -1 - M J ~ 

<-.)—-vŝ ^ ^ _y=(J+UM,+1,_lbM,) 
where 5+i-hi+5-2M s is always an even number as S and Ms are both integers or 
half-integers. 

Appendix IV. Detailed structure of the H s o matrix 

As pointed out above, the matrix is tridiagonal and only two matrix elements 
need to be calculated explicitly. The detailed structure is provided below, the 
cases of equal and different multiplicities are given separately in Table III and 
Table IV. The orbital part is assumed to be different for the two states. The only 
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two matrix elements which are explicitly calculated are A and B , the rest are 
obtained from these two. 

Table III. H s o matrix for equal multiplicities. 

S S-l S-2 <- Ms' 
s A -Β* 0 0 0 

S- l Β A A -bB* 0 0 
S-2 0 bB* 0 

M s î 
0 0 

M s î 0 0 0 

A9B - calculated matrix elements, while a and b are Clebsch-Gordan 
coefficients: 
a = (StlfS-ltO\SfS-l)/(SJtS,0\S,S) and b = (SJ,S-l,-l\S,S-2)/(S,l,S,-l\S,S-l) 
"... " denote further propagation of A and Β by means of eq 7. 

Table IV. H s o matrix for different multiplicities. 

S+1 S S-l ... <-M s '-> -S - S - l 
s Β A bB* 0 0 0 0 

S- l 0 aB cA 0 0 0 
S-2 0 0 0 0 
M s î 0 0 0 0 
-S 0 0 0 0 ... B * 
AyB - calculated matrix elements and a,b,c are Clebsch-Gordon coefficients: 
a =(S+l,ltS,-l\S,S-l)/(S+l,l,S+l,-l\$,S), 
b^s+iis-ufcsyis+ij, -s-i,i\s,-s) 
c=(s+i,i,s-!,o\s>s-iy(s+i,i,s,o\s,s) 
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Chapter 14 

Non-Adiabatic Bending Dissociation of OCS Induced 
by Orbital Unlocking 

Toshinori Suzuki1,2 and Shinkoh Nanbu2,3 

1Institute for Molecular Science, 2Graduate University for Advanced Studies, 
and 3Research Center for Computional Science, Okazaki National Research Institutes, 

Myodaiji, Okazaki 444-8585, Japan 

U V photodissociation of OCS via 2Α'( 1Δ) leads to a bimodal 
speed distribution of S(1D2) fragment atoms whereas a single 
speed distribution characterizes the S atoms emerging from the 
1A"(1Σ-) surface. The potential energy surfaces of these two 
states are almost degenerate, meaning that the bimodal state 
distribution observed for the 2A' state cannot be explained by 
the topography of the adiabatic surfaces. It is shown that the 
bimodal distribution originates from concomitant adiabatic and 
non-adiabatic dissociation processes from the 2A ' state. The 
non-adiabatic transition is due to unlocking of an S atom 
electron orbital from the C-S axis by rapid rotation of CO. 

INTRODUCTION 

Within the adiabatic (or Born-Oppenheimer) approximation, a chemical reaction 
is viewed as the nuclear motion on a single potential energy surface (PES). The 
nuclear motion over the PES occurs with little or no recrossing in direct reactions, 
resulting in short trajectories, while long and (pseudo)chaotic trajectories are 
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observed in compound reactions. However, in so far as the nuclear motion occurs 
on a single PES, these modes of reaction are only different in their complexities. 
On the other hand, when the energies of different electronic states approach each 
other at a certain nuclear position, the Born-Oppenheimer approximation 
becomes totally inaccurate, which is observable by 'non-adiabatic transitions' 
between the adiabatic PES's (1-4). Their consideration is particularly important 
when discussing the dynamics of polyatomic molecules, where a number of 
surface crossing occur between close-lying electronic states. Photodissociation of 
OCS leads to the same product, CO^Z^+S^Da), from both adiabatic and non-
adiabatic dissociation channels. Because of this, the importance of non-adiabatic 
coupling in OCS was not readily recognized in the past. In this contribution, we 
describe how the non-adiabatic dissociation dynamics in OCS have been 
disentangled by two-dimensional photofragment imaging and ab initio 
wavepacket calculations. In the process we will show that one-electron molecular 
orbital pictures such as Walsh diagrams (5) well illustrate the electronic origin of 
the non-adiabatic interactions. 

TWO-DIMENSIONAL PHOTOFRAGMENT IMAGING 

A pump laser pulse dissociates parent molecules to create a rapidly expanding 
sphere of neutral fragments. In the ion imaging method (6), the neutral fragments 
are state-selectively ionized by a probe laser pulse and the resulting ion cloud is 
projected onto an imaging detector that consists of a microchannel plate (MCP) 
together with a phosphor screen and a C C D (charge-coupled device) camera. 
When an ion enters one of the channels (10 μπι in diameter) in the M C P , 
secondary electrons are amplified in the channel and accelerated toward the 
phosphor screen. The electron impact on the phosphor provides a bright light 
spot that indicates the arrival position of an ion on the MCP. The image on the 
phosphor screen is captured by the C C D camera and integrated for a number of 
laser shots. The photofragment velocity components parallel to the detector face 
(v x and v y) are readily determined from the flight time (t) and the arrival position 
(x, y) of an ion from the relation vx=x/t and vy=y/t The ions with different 
masses are discriminated by the flight times from the ionization region to the 
detector. Thus, an ion image can be selectively observed for a particular mass of 
interest by time gating the M C P or the camera. Photofragment imaging uses 
resonance-enhanced multiphoton ionization (REMPI) to detect the atoms and 
molecules in a particular quantum state. Therefore, the observed image provides 
the scattering distribution of state-selected products. It should be noted that 
electron impact, one-photon, or non-resonant multi-photon ionization methods 
cannot provide such state-selectivity in ionization. The image obtained is a 
projection of the 3D fragment velocity distribution onto a 2D detector plane. The 
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data are numerically inverted to recover the original 3D distribution for 
quantitative analysis (7). It can be shown mathematically that a cylindrically 
symmetric 3D object can be reconstructed from a single projection image, i f the 
projection plane involves the symmetry axis. The cylindrical symmetry is ensured 
for the 3D ion distribution by aligning the pump and probe laser polarization 
parallel to each other in photodissociation experiment. Therefore, this 
polarization combination and a projection direction perpendicular to the 
symmetry axis are usually employed. Inverse Abel transform is most commonly 
used to invert the 2D projection to the 3D distribution (7). 
In our experiment (8), OCS seeded in He or Ar was expanded from a pulsed 
valve with a stagnation pressure of about 1 bar and collimated by two skimmers. 
The molecular beam intersects, perpendicularly, the counter-propagated pump 
and probe laser beams. The time delay between the pump and probe laser pulses 
is kept less than 20 ns. Both the pump and probe beams are focused with 
axisymmetric lenses (f = 250 or 300 mm). The photoions produced are 
accelerated up to a kinetic energy of 4 keV and projected onto the M C P backed 
by a phosphor screen (36 mm in effective diameter). A high voltage pulse, 1600-
1800 V in height and 200 ns in width, is applied to the M C P to time-gate the ions 
with the particular mass of interest. The transient image on the phosphor screen is 
captured by a video-rate (CCIR) interline C C D camera and integrated by an 
image capture board with 16 bit on-board memory. During the integration of an 
image, the probe laser frequency is scanned over the entire absorption line of the 
S atom to eliminate Doppler broadening effects due to the fragment recoil 
velocities. 

RESULTS AND DISCUSSION 

A. 2D imaging of S(*D2) in photodissociation of OCS 

OCS is a 16 valence-electron system similar to C 0 2 , N 2 0 , and CS 2 . The first 
absorption band of OCS in the U V region is due to transitions to the close-lying 
]Σ~ and1 A states that arise from the H O M O - L U M O transition. Electric dipole 

transitions from the ground state ΧΣ* to the *Σ~ and*A states are forbidden. 
However, bending deformation splits the lA state into A ' and A " and transforms 

! Σ to A " components (CooV ~~* C s ), to which transitions from the ground state 
are weakly dipole-allowed (9-12). 
There are four dissociation channels energetically open for the first absorption 
band of OCS, 

OCS -> 00(*Σ + ) + S ^ ) Δ Η = 98.3 kcal/mol (I) 
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-» 0Ο(*Σ +) + S( 3P 0) Δ Η = 73.6 kcal/mol (lia) 
-* COCl^ + S( 3P0 Δ Η = 73.0 kcal/mol (lib) 
— CO(ll+) + S( 3P 2) Δ Η = 71.9 kcal/mol (He). 

However, the spin-forbidden channels (Ha) - (lie) contribute only 5% relative to 
the spin-allowed channel (I) (13). In the following, we focus on the main 
dissociation channel (I). 
Since CO is produced predominantly in the ground vibrational state of Χ 1 Σ + (14) , 
the rotational distribution of CO can be determined from the translational energy 
distributions of the concomitantly produced S atoms using energy and 
momentum conservation laws. In fact, observation of the S atoms is 
advantageous, since it discriminates between the four exit channels 
unambiguously. 
The inverse Abel transforms of the S(lD2) images measured at 223,235, and 248 
nm are shown in Fig. 1. The key to assigning the electronic states involved is that 
dissociation from the A ' and A " states leads to S atoms ejected parallel and 
perpendicular to the pump laser polarization, respectively. Note that the high 
translational energy component appearing as an outer ring in the ion images 
varies from an isotropic (223 nm) to anisotropic distribution (248 nm). This 
means that the high translational-energy component is created from both A ' and 
A " , and that the relative photoabsorption cross-section to the A " state increases 
with respect to A ' in the longer wavelength region. Since the only A ' state 
expected in this energy region is the A ' Renner-Teller component of the 
! Δ state, the observed photofragments produced parallel to the photolysis laser 
polarization can be assigned to it. On the other hand, there are two A " states in 
the region, namely the A " Renner-Teller component of *Δ and ΑΜ( ιΣ~). However, 
from the increasing contribution of A " in the longer wavelength region, the 
observed perpendicular fragments are assigned to Α"(ιΣ~) that is located at lower 
energy than the lA state. The A " Renner-Teller component of lA exists in higher 
energy than the A* component. 
A striking experimental result is that the speed distribution of S (or the rotational 
distribution of CO) is bimodal (8,14,15). Since the bending wavefunction of a 
parent molecule and the rotational distribution of a diatomic fragment can be 
related by the rotational reflection principle (16), a Gaussian-shaped rotational 
distribution of CO may be anticipated for a single dissociation channel. The 
observed bimodal distribution implies that there is bifurcation in dissociation 
dynamics. The scattering distribution of S atoms observed by ion imaging 
indicates that the bimodal distribution occurs only for dissociation from the 
Α'( ] Δ) state and not for the Α"(ιΣ~) state. The question is why does it occur only 
from the Α'(*Δ) state? 
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Figure I Inverse Abel transforms of the S^D^ images observed for 
photodissociation at 223, 235, and 248 nm. The center-of-mass translational 
energy releases calculated from these images are also shown. The fast 
component gradually changes from an isotropic distribution at 223 nm to an 
anisotropic distribution at 248 nm. The photoabsorption at 248 nm is 
dominated by a perpendicular transition to A ". A bimodal speed distribution 
occurs only in dissociation from the A ' state. 
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Β . Electronic structure of OCS 

To answer this, we calculated the PES's by the ab initio MRCI (multi-reference 
configuration interaction) method (8). In order to describe the low-lying 
electronic states accurately, the active space was selected as follows: 

[(9σ)(2π)(3π)(4π)(10σ)(11σ)]10. 
The CASSCF calculations were performed by considering all possible 
configurations of the nine active orbitals filled with ten electrons. The restricted 
closed-shell SCF MO's were used in an initial state-averaged CASSCF 
calculation for the five A ' and three A " states correlating with S(3P)+CO, 
S(1D)+CO, and S(*S) +CO. The natural orbitals obtained by the CASSCF 
calculation were used in the final internally-contracted MRCI calculations. The 
configuration state functions (CSFs) were generated by single and double 
excitations based on the reference configurations obtained by the CASSCF 
calculation. However, since the total number of configurations were as large as 
6,600,000, only 300,000 configurations were selected in terms of the squares of 
the CSF coefficients. Since the CO fragment is not vibrationally excited, we 
fixed the C=0 bond length to 1.13 Â and constructed a two-dimensional model 
with R and θ coordinates. The potential energies and transition dipole moments 
were calculated at 361 points and spline-interpolated. 

12.0 

10.0 

? 8.0 

1 Φ 
§ 6.0 
.2 

I 4.0 

2.0 

0.0 
2.0 2.5 3.0 3.5 4.0 4.5 5.0 

R(A) 

Figure 2 A section ofpotential energy surfaces for R coordinate in the linear 
geometry. The CO distance was fixed to J.J3Â. (Adopted with permission 
from reference 8. Copyright 1998 American Institute of Physics) 

D
ow

nl
oa

de
d 

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

4

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



306 

12.0 ί 

0.0 45.0 90.0 135.0 180.0 
θ (Degrees) 

Figure 3 A section ofpotential energy surfaces for θ coordinate calculated 
with R=2.2Âandr=1.13Â. (Adopted with permission from reference 8. 
Copyright 1998 American Institute of Physics) 

Figures 2 and 3 show one-dimensional cuts of the calculated ab initio PES's for 
R and Θ. As seen in Fig. 2, both the Α'( ι Δ) and ΑΜ( !ΣΓ) are bound in R, but show 
conical intersections with the repulsive ιΠ state at around R=2.5 Â which 
provide the adiabatic dissociation pathways. It should be noted that both the 
A'(*A) and Α"(ιΣ~) surfaces are steeply declined for Θ, as seen in Fig. 3. 
Therefore, the initial motion on these surfaces is rapid bending of the molecule. 
Figures 2 and 3 indicate that the topographies of 2A' and 1 A " PES's are quite 
similar. 
The bond angles of triatomic molecules can often be qualitatively explained by 
the diagram of one-electron orbital energies as a function of bending angle 
known as a Walsh diagram (5). The diagram for C 0 2 , isovalent with OCS, is 
shown in Fig. 4. One can clearly see that bending deformation mostly affects the 
in-plane orbitals. The linearity of C 0 2 in the ground state is attributed to 
destabilization of the H O M O (4b2) by bending. On the other hand, bending 
deformation significantly stabilizes the L U M O (6a0, so the energies of the 
H O M O and L U M O are reversed for smaller bond angle. The electronic structure 
of OCS is essentially the same as that of C 0 2 . However, the H O M O (12a') and 

D
ow

nl
oa

de
d 

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

4

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



307 

L U M O (13a') fall in the same symmetry speeies in the C s point group so they are 
symmetry repelled. The out-of-plane HOMO 3a" orbital is not much affected. As 
a result, 12a' and 3a" have similar orbital energies, and the 2A' and 1A" PES's 
become almost identical, since these arise predominantly from one electron 
promotion of 13a'(4itx)«-12a'(3Ttx) and 13a'<-3a"(3îCy). 

Figure 4 Walsh diagram for C02 and schematic MO's adopted with permission 
from reference 9. The gray color represents the regions of negative phase. Only 
one member of each pair of the degenerate Ιί^ΐπ^ and 27Cu orbitals is shown for 
clarity. The other member of each pair is identical with the one shown, except 
that it is rotated by 90 degrees about the internuclear axis. For the bond angle of 
90 degree, except for the Ibj, la2, and 2b; orbitals, the molecule is shown in the 
yzplane and all orbitals are in the same plane. For the Ibj, la2t and 2b/ orbitals, 
the molecule is shown in the xz plane and the orbitals are in the same plane (i.e., 
the orbitals are perpendicular to the molecular plane). 
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More quantitatively, the orbital energies and shapes of the 13a', 12a', and 3a" 
MO's were calculated at the CASSCF level with DZP basis set, and these fully 
supported the qualitative argument described above. 
We performed wave packet calculations on the 2A ' and 1A" adiabatic ab initio 
surfaces. As is easily understood from the similarity of the 2A' and 1A" PES's 
and from the rotational reflection principle, dissociation on these two surfaces 
produce almost identical product distributions, i.e. singly-peaked Gaussians. This 
is clearly at odds with the observed bimodality in the product distribution and the 
specificity observed for 2A' , suggesting that bimodality cannot be explained by 
adiabatic dissociation dynamics. Close inspection of Fig. 3 reveals that both the 
2Α'( 1Δ) and ΙΑ'χ 1 !" ) surfaces approach the ground state around θ = 65°, where 
non-adiabatic transition from 2A' to 1 A ' might be anticipated. 

C. Non-adiabatic transition in the bending coordinate 

Non-adiabatic transitions are induced by off-diagonal matrix elements of the 
nuclear kinetic operator on the electronic wavefunctions. In the case of OCS, a 
rotational (Coriolis) coupling is essential. If we assume the total angular 
momentum J to be zero, a rotational coupling term is expressed as follows: 

Η rot ~ 

1 

~{jMRR4 2μ 

2μγτι 

1 1 
[2MrR2 2μτνι 

(1) 

dû 
where L and j are the orbital angular momentum of relative motion and the 
rotational angular momentum of a diatomic fragment molecule, respectively. 
Note that * diminishes as R increases, while * due to an internal 

2MRR2 2μτν2 

rotation of CO has no apparent R-dependence, so it becomes relatively more 
important at large R. 
If we take into account only the one-dimensional non-adiabatic coupling element, 
the non-adiabatic dynamics is reduced to a one-dimensional two-state problem. 
To solve it, a unitary transformation can be performed on the electronic 

dé 
vanishes wavefunctions such that the derivative coupling element 

from the coupled equations for the nuclear motion. In this way, we performed 
wave packet calculations on the diabatic PES's constructed from the adiabatic ab 
initio PES's (8). The bimodalitv was well reproduced bv our calculations (8). 
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The experimentally observed non-adiabatic transition efficiency from the 2A* to 
the 1A' state was 30 % at 223 nm. Such large contribution discovered for this 
prototypical triatomic molecule illustrates the importance of non-adiabatic 
transition in polyatomic molecules in general. 
On the other hand, the calculated transition efficiency was only 10%. For 
examining whether this discrepancy is due to the non-adiabatic transition along 
the R coordinate neglected in the above treatment, we have evaluated it by 
analytical theory. We decomposed the nuclear position and momentum into the θ 
and R directions and applied one-dimensional non-adiabatic transition theory at 
the most critical point of R=2.6 À and 0=75°. The one-dimensional bending 
potentials of OCS at R=2.6 Â and those of C-S stretching at 0=75° were 
extracted from the sections through the 2A ' and 1A* PES's. We used the 
formulas given by Zhu and Nakamura (4) for these two curve-crossing cases to 
obtain the transition efficiencies. The non-adiabatic transition probabilities 
calculated for 223 nm photodissociation were 2-3 times larger for the bending 
(0.09) than the C-S stretching motion (0.03-0.04). Thus, the discrepancy is not 
reduced by considering the R motion. Full three dimensional analysis on more 
accurate PES's seems necessary for reproducing the experimental value 
quantitatively. 

D. Non-adiabatic bending dissociation as an orbital unlocking 

Fig. 5 shows the picture of MO's along the reaction coordinate with the inertial 
axis fixed in the same direction. The bending motion is dominated by the fast 
rotation of CO as we have seen in equation (1). The most critical region for the 
non-adiabatic transition is between 80 - 120°. An adiabatic process retains an 
electron in the 13a* orbital that is the p-orbital parallel to the chemical bond, 
while the non-adiabatic process due to electron deactivation from 13a' to 12a' 
corresponds to rotation of the p-orbital. In other words, the p-lobe of 13a' on the 
S atom is ρσ in character while that of 12a' is ρπ. The non-adiabatic transition of 
OCS from the 2A' to 1 A ' state is essentially an unlocking of an electron oribitai 
from the bond axis; that is similar in nature to a ρσ-ρπ transition observed in 
atomic collision dynamics. 
In Fig. 6, we present the bending potential of 2A' and 1 A ' around the point of the 
largest non-adiabatic coupling along the reacton coordinate, R=2.7 Â and 0=65°. 
It is seen that the separation of the two potentials is much smaller than the one at 
R=2.2 Â, since the interaction of S with CO is weaker at R=2.7 Â. These are the 
potentials sampled by the wavepacket in non-adiabatic transition. 
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Figure 5 The shape ofΊ3α \ 12a ' and 3a " molecular orbitals along the 
reaction coordinate calculated by CASSCF with DZP basis set. 
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Figure 6 A section ofpotential energy surface along θ with R=2.7 À and r—l.lS À. 

Figure 7 The shapes of HOMO and L UMO of N20 as a function of Θ. R and r 
were fixed to 1.8 and 1.128, respectively. 
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As the Walsh diagram predicts, the avoided crossing between the A9(lA) and 
Α9(ιΣ+) states is not specific for OCS but is general in 16 valence electron 
systems [5]. In order to demonstrate it, we present the HOMO 9a9(2%x) and 
2a"(2fty) and L U M O 10a'(3îrx) of the N 2 0 molecule in Fig. 7. The shapes of the 
MOs are extremely similar to those of OCS, except for some differences such as 
the M O amplitude on the central nitrogen atom. As a result, the PES's of N 2 0 are 
quite similar to those of OCS [17-19]. In the dissociation of N 2 0 , however, the 
light mass of the Ν atom allows 1.5 times faster motion along R than in OCS. It 
is quite interesting to compare the dynamics of N 2 0 molecule with OCS for 
elucidating the non-adiabatic processes in 16 valence electron systems. 
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Chapter 15 

Electronic Structure and Dynamics in the O 4 System 

Ramón Hernández Lamoneda 

Centro de Investigacionces Químicas, U A E M , 62210 Cuernavaca, Mor., México 

Abstract 

There has been a renewed interest in the properties of the O4 system in 
recent years coming from a variety of scientific fields( high resolution 
spectroscopy, nature of intermolecular forces, molecular beam scattering, 
molecular collision dynamics, photochemistry, atmospheric chemistry, solid state 
physics) and aimed at a better understanding of its electronic structure and 
dynamics. In this contribution I will review our current knowledge of this system 
with particular emphasis on the electronic structure and dynamics of the 

O2(v»0) + O2(v=0) collision which we have been studying in the past several 
years and is still the subject of debate stemming from unsolved discrepancies 
between theory and experiment and also its possible relevance in determining the 
chemical composition of the atmosphere. 

314 © 2002 American Chemical Society 
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The van der Waals complex 

From the point of view of its electronic structure already in 1924 G.N. Lewis(i) 
speculated the formation of a diamagnetic 0 4 complex in liquid oxygen and used 
it to explain its magnetic susceptibility. Since then the complex, better described 
as a dimer (02)2 , has been characterized spectroscopieally(2-£), theoretically(9-
15) and recently in molecular beam scattering experiments(76,77). There is 
general agreement that the ground electronic state multiplicity corresponds to a 
singlet with D 2h symmetry(rectangular) with low-lying triplet and quintet states 
all correlating with two oxygen molecules in their corresponding triplet ground 
states. The intermolecular potential is highly anisotropic and this has a profound 
effect on the collision dynamics(U). Recently Aquilanti et 21(16,17) determined 
potential energy surfaces using a novel harmonic expansion functional form and 
fitting the radial components as to reproduce the experimentally determined total 
integral cross section including features which are very sensitive to the 
intermolecular potential. The energy surfaces obtained for the three multiplicities 
are in good agreement with previous theoretical work (9-75) considering the 
weak nature of the interaction and the complexity of the electronic structure for 
this system. There are important quantitative differences in the precise shape of 
the potential analyzed at fixed orientations of the monomers, particularly the 
internuclear distance at the minima and the well-depths for some geometries. It 
stands as a challenge for ab initio calculations to reproduce in a quantitative way 
the experimentally determined potential energy surfaces and the spin-spin 
interactions in the (0 2) 2 dimer. 
The O4 system is also of relevance in describing the properties of the condensed 
phases of oxygen as has been shown recently in high pressure studies(i£). Most 
phases of solid oxygen can be understood using molecular oxygen as a basis ,ie, 
the molecular bond does not change significantly when the intermolecular 
potential increases as a result of the high pressure. For the so-called ε phase in 
the 10-63 Gpa pressure range a qualitative change in the nature of the 
intermolecular potential occurs as evidenced in the appearance of a new band in 
the infrared spectra and other large changes in the macroscopic properties of this 
phase. Furthermore the intermolecular separation between neighbouring 
molecules is 30 % shorter than the equilibrium distance observed for the dimer 
in the gas phase which is consistent with the formation of a 'new bond' in the 0 4 

complex. The precise nature of the intermolecular interaction in the complex 
still awaits more detailed experimental and theoretical studies. 
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The chemically bound 0 4 complex 

The formation of oxygen rings in analogy with the well-known sulfur rings was 
the subject of theoretical studies in the eighties with modest ab initio 
ealculations(i9-22). In 1992 Schaefer and Seidl studied the chemically bound 0 4 

system as a potentially efficient high energy density material(23). Although the 
equilibrium structure can be reasonably well described by single configuration 
methods, one of the key issues for its potential practical use is its relative 
stability with respect to dissociation into oxygen molecules, a process which is 
accompanied by spin recoupling and the transformation of a closed shell system 
into two open shell fragments which should be more properly described with 
multiconfigurational wavefunctions(23). Very slow convergence of the saddle-
point properties with respect to the inclusion of electron correlation at increasing 
levels of theory illustrated the limitations of using single reference methods. In 
particular, the barrier towards dissociation diminished dramatically as the level 
of treatment increased. Since the reaction has an early barrier and because 
electron correlation was included at the highest level of theory with the 
CCSD(T) method(24) their prediction of a stable molecule could still be 
considered reliable. We used the CASMP2 method(25,26) with large basis set in 
order to check the reliability of the previous predictions and found both 
qualitative and quantitative agreement regarding the stability of the complex(27). 
No direct experimental evidence of its existence has been given yet. 
Another quantity of interest for chemically bound 0 4 is its relative energy with 
respect to two oxygen molecules. Schaefer's group estimated it at the 
CCSD/DZP level and obtained a value of 83 kcal/mol (28). It is important to 
emphasize that the noniterative correction for the triple excitations was not 
included when calculating this property. The accurate determination of the 
relative stability is important because the 0 4 species has been proposed as a 
possible intermediate to explain the dark channel observed by the Wodtke group 
to be described in a section below and recent photoionization spectra(29) 
arguing that under the experimental conditions there should be enough energy to 
form it. In particular the 83 kcal/mol value places it below the endothermicity for 
the reaction forming ozone 94 kcal/mol. We calculated the relative stability 
using the CASMP2 method with the 5s4p3d2f A N O basis set and obtained a 
value of 104 kcal/mol. A recent study of the 0 4 chemically bound complex(29) 
showed that its relative stability exhibits a large change when the noniterative 
correction for triple excitations is included, CCSD(T), predicting a value 20 
kcal/mol higher than with the CCSD method. 
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Highly vibrationally excited states electronic structure and 
dynamics 

The study of highly vibrationally excited molecules is a quickly developing area 
which has relied on novel laser-based experimental techniques as well as 
theoretical models(30). Some of the key questions to be answered relate to the 
specific properties and collision dynamics of molecules containing enough 
internal energy to react, how they differ from the low energy non-reactive regime 
and how previous theoretical models have to be modified to properly reproduce 
their behaviour. Another source of interest is the possible relevance of highly 
vibrationally excited states in determining the chemical composition of the 
atmosphere. This issue has been the subject of great interest and debate 
recently(37-3S) particularly in relation to the possibility of producing ozone 
from highly vibrationally excited 0 2 molecules through the reaction: 

0 2(v) + O2(v=0) => O ^ A i ) + 0( 3 P) (Rl) 

and considering that highly vibrationally excited 0 2 molecules are known to be 
formed during the photodissociation of ozone in its triplet channel(32,34) in a 
bimodal distribution with maxima at v=14 and v=27: 

0 3 + hv => 0( 3P) + 0 2 ( Χ 3 Σ β , ν ) 

Our interest in this field started with the experimental determination by 
Wodtke's group of the self-relaxation rates of molecular oxygen in highly 
vibrationally excited states(v=14-28)(37). We developed (13) a potential energy 
surface to describe rovibrational inelastic scattering based on ab initio 
calculations of the six dimensional surface and were able to reproduce the 
available experimental results covering the range v=8-24. For higher values a 
sharp increase in the depletion rates is observed experimentally and the 
theoretical treatment was unable to reproduce it. At the time of the original 
measurements a reasonable explanation by the Wodtke group was proposed: 
since the observed threshold for enhanced relaxation is coincident with the 
opening of the reactive channel leading to ozone formation it was argued that 
this was the new mechanism observed and which could not be reproduced by our 
calculations since the PES only sampled the non-reactive region. Since then 
there have been a few experimental and theoretical studies aimed at confirming 
or suggesting alternative explanations and a brief summary of these is in order. 
Wodtke's measurements can be divided in two groups according to the specific 
experimental scheme employed(33,37) : I) v=19-26 II) v=27. Scheme I relies on 
a direct determination of the total depletion rate by monitoring the decay of the 
initially prepared vibrational state and fitting the pressure-dependent data to an 
exponential from which the lifetime and rate constant is obtained. This 
procedure yields what we believe is an extremely accurate estimate of the total 
depletion rates for v= 19-26. Unfortunately it cannot be applied for higher values 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

5

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



318 

of ν since these dissappear too fast to be observed directly . Scheme II relies on 
monitoring the vibrational state just below the initially prepared one and hence 
the data obtained has to be fitted by a kinetic model based mainly on the 
assumption that there are three main relaxation channels: single and double 
quantum steps and a so-called 'dark-channel' which is suggested to be due to the 
ozone formation reaction. Some of the rate constants related to the different 
relaxation channels are used as parameters in the fitting procedure so that their 
final determination is indirect. Although reasonable arguments are given for the 
kinetic model followed the reliability of the determination can be questioned. 
Further indirect support for the presence of an activated chemical process was 
obtained by varying the temperature and comparing the dark channel rates for 
v=26 and v=27 and noticing the difference follows a decrease in the energy of 
activation corresponding to the difference in internal energy between these 
states(57). As we will show later non-reactive processes may also display this 
behaviour. 

a) Theoretical studies on the ozone forming reaction (Rl) 

Prompted by the Wodtke group measurements and analysis, a few theoretical 
treatments of the chemical reaction have been performed(i9-47). The first of 
these(39) was mainly concerned with a variational transition state treatment of 
the reverse reaction - R l , but also performed preliminary semiclassical 
wavepacket calculations on R l . Although the number of trajectories computed 
was not enough to obtain converged results, there was little evidence of reaction 
taking place and rather wavepackets were inelastically scattered. We applied a 
quantum reduced dimensionality treatment to R l using both time-dependent and 
time-independent methodology to obtain converged vibrationally-selected 
reaction rate constants(40). In that study it was shown that vibrational excitation 
enhances the reaction rate and a significant change occurs for v=27 in analogy 
with the treshold behaviour observed experimentally. Unfortunately the reaction 
rate values were too small compared with pure vibrational relaxation and it was 
considered that even with a more accurate potential energy surface and 
dynamical treatment the reaction rates could not change enough to explain the 
experimental observations. 
Most theoretical treatments of R l and - R l have been based on the potential 
energy surface developed(42) by Varandas and Pais(VP). This surface is based 
on a double many-body expansion of the potential and used in a multiproperty fit 
including spectroscopic, dynamical and ab initio information. The surface has 
the merit of giving a relatively smooth global representation for the 0 4 system, it 
yields accurate thermal rate constants for the reverse reaction(39,4J-45) and 
other dynamical properties but displays some minima which are most likely 
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spurious and given the nature of the fit one cannot expect it to reproduce finer 
details of the interaction potential which should be obtained via accurate ab 
initio calculations. Nevertheless it has played a key role in obtaining an initial 
description of the reactive scattering properties of the system. Extensive 
quasiclassical calculations have been performed on the V P surface by Varandas 
and Wang(46) analyzing a variety of energy transfer processes and reactions. In 
particular they confirm the low reactivity for initial states of relevance for the 
Wodtke's group experiments but go on to analyze initial combinations in which 
both O2 molecules are highly vibrationally excited leading to rate constants of 
the same order of magnitude as estimated in the experiments. Although this 
finding can be of relevance for the non-equilibrium modeling of stratospheric 
ozone concentrations(30-36), we fail to see how it can explain the Wodtke group 
observations since the experimental conditions(37) guarantee the excess of 0 2 in 
the ground vibrational state as the relaxing partner. 
A combined experimental and theoretical study(¥7) of the products energy 
distribution for the reverse reaction(-Rl) showed discrepancies which were 
attributed to limitations in the V P potential. More specifically, the rotational 
energy distribution measured in the experiment is much colder than that 
predicted from quasiclassical trajectory calculations on the V P surface and the 
translational energy release is also significantly smaller as measured in Doppler 
profiles. A plausible explanation for these discrepancies suggested by the 
authors is that in fact both 0 2 molecules emerge vibrationally excited. This is in 
contradiction with the predictions made by quasiclassical trajectories on the V P 
surface in which one of the 0 2 molecules remains in the ground vibrational state 
and acts merely as an spectator to the reaction. We have calculated(27) the 
reaction path using ab initio methods and found that along the path the 
internuclear distance for the so-called spectator bond does indeed varies slowly 
and smoothly from its equilibrium value in ozone to that in molecular oxygen. 
More detailed studies of the potential surface exploring regions outside the 
reaction path and dynamics calculations are needed to clarify the validity of the 
spectator bond mechanism. An ab initio reduced dimensionality surface was 
developed(4i) by Lauvergnat and Clary(LC) and used to calculate vibrationally 
selected rate constants. They also found values which are orders of magnitude 
smaller than the vibrational relaxation rates and therefore confirm the idea that 
the sharp increase observed for depletion rates must come from a different 
mechanism than chemical reaction leading to ozone formation. It is interesting to 
mention that the geometry of the saddle point predicted by the L C ab initio 
surface and our own reaction path calculations(27) is qualitatively similar to that 
of the V P surface and this has to be recognized as an achievement of the double 
many-body expansion methodology(42) since there was no ab initio information 
on the saddle point geometry used in the fitting procedure. 
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b) Other vibrational relaxation mechanisms 

OUT original (13) calculations for the vibrational relaxation rates were limited in 
two ways, first they only considered single quantum processes and second they 
were based on an ab initio surface which did not include the reactive region of 
the potential. It was reasonable to expect that the difference between theory and 
experiment for ν > 26 could be related to these limitations. 
The role of 2 -4 1 vibrational transitions for the relaxation of 0 2 (v) has been 
investigated (48) using a semiclassical wave packet method and using the V P 
potential. In accordance with our previous calculations(ii) they find that the 
single quantum processes dominate up to ν = 25 but the multiquantum process 
starts to compete for higher values and even dominates for ν = 30 due to a 
reduction of the energy mismatch between reactants and products for this state. 
Taking into account the multiquantum process the total relaxation rate is still one 
order of magnitude smaller compared with the experimental depletion rates 
which shows that the dark channel must be due to other processes. 
From our (40) reduced dimensionality time-dependent calculations of the 
reaction rate it became apparent that the saddle point region could have a strong 
influence on the vibrational relaxation since it was observed that wave packets 
which were inelastically scattered sampled that region of the potential. This 
effect was quantified by calculating the vibrational relaxation probabilities 
within the same reduced dimensionality approach and converting them into rates 
using an ad hoc procedure(49,50). The calculations showed, for the first time, a 
clear jump in the depletion rates due to enhancement of the vibrational relaxation 
rates through the saddle point region of the potential. Furthermore the 
calculations reproduced qualitatively the activated process behaviour found in 
experiments(ii), ie, the temperature dependence of the critical value of ν at 
which the rates show a dramatic increase. Quantitative differences remained both 
in the critical values of ν and in the absolute values of the depletion rates both of 
which could be due to inaccuracy of the V P potential used in the calculations. 

c) Evidence of non-adiabatic behaviour in highly vibrationally excited 0 2 

and0 4 

Molecular oxygen is not only a stable open-shell species but presents very low-
lying electronic states. For vibrational states above v=5 of the ground electronic 
state there are open channels for transfer into the lowest-lying electronic states 
and this already suggests the possible relevance of non-adiabatic effects in 
collisions of oxygen molecules. The possibility of having vibrational to 
electronic (V-E) energy transfer for highly vibrationally excited 0 2 was briefly 
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mentioned in our original paper on the rates of vibrational relaxation(iJ) and the 
topic in general has been the subject of many early theoretical studies(5/,52). 
In 1999 the Wodtke group obtained experimental evidence for electronic non-

adiabaticity while doing high resolution spectroscopy for the isolated 
diatomic(53). Their main objective was to obtain very accurate molecular 
constants for the highly vibrationally excited states of 0 2 ( Χ 3 Σ β , ν = 26 - 31). 
The rotationally resolved spectra could be well reproduced using a Hamiltonian 
that included spin-spin and spin-rotation terms for all the vibrational states 
considered except for v=28 where the transitions between identical spin 
components showed clear evidence of a perturbing state which shifted the 
resonance peaks and introduced an additional peak. The perturbing state could 
be readily assigned as 0 2 (b 1 X g , ν = 19) as it is well-known that spin-orbit 
coupling exists between the ground and second excited state of 0 2 and for the 
vibrational states considered there is an energy mismatch between the two states 
of only a few cm"1. Furthermore, inclusion of spin-orbit coupling through first 
order in the Hamiltonian reproduces the perturbed rotationally resolved 
spectrum. Using reliable (though incomplete) sets of values for the lower 
vibrational term energies(54,55) together with their own determination for the 
higher vibrational states they obtained R K R potentials for both ground and 
excited electronic state. The potentials cross around r = 2.45 Â at an energy of 
40,463 ± 1000 cm"1 and a spin-orbit coupling of 200 ± 20 cm"1 has been 
estimated from a first-order perturbation theory analysis. 
The presence of spin-orbit coupling in the isolated diatomic suggests that 
nonadiabatic effects could play a major role in the description of the collision 
dynamics for the 0 4 system. It is important to emphasize that so far all dynamical 
calculations have relied on a single potential energy surface both for vibrational 
relaxation and for reactive processes. 
Prompted by the new experimental findings we decided to study spin-orbit 
coupling effects for the collision system O 2 ( v » 0 ) + O2(v=0) with the main 
objective of anafyzing the influence of the intermolecular potential on the 
diatomic states which are coupled by the spin-orbit interaction(56). We 
considered a C 2 v minimum energy path which corresponds to the equilibrium 
geometry of the O 2 ( v » 0 ) · · · O2(v=0) van der Waals complex and constructed 
two dimensional surfaces by varying the internuclear distance of the 
vibrationally excited molecule(r) and the center of mass distance between 
them(R). The minimum for the van der Waals complex is of singlet multiplicity 
but there is a very low-lying triplet both of which correlate with the diatomic 
fragments in their electronic ground state and are degenerate asymptotically. 
There are six excited electronic states of triplet multiplicity which could be of 
relevance for nonadiabatic transitions. The spatial symmetry and parentage in 
terms of the diatomic fragments for the ground and excited states described 
above are: 
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Χ 3 Σ g + Χ 3 Σ β ( Χ 1 Αι and X 3 A j ), Χ 3Σ\ + a \ ( 1%, 2 % and Χ 3 Β 2 , 1 3 Β 2 ), 
X 3 ^ g + b ^ +

g ( 2 3 B 2 , 3 3 B 2 ) 

Selection rules for the diatomic forbid spin-orbit coupling between the ground 
and first excited (a *Ag) electronic state so that for large values of R only the 
excited states which correlate with one fragment in the second excited state can 
be coupled to the ground singlet and triplet states through spin-orbit interactions. 
We have shown(56) that when the molecules are allowed to interact through the 
intermolecular potential there appear avoided crossings between the 1 3 B 2 and 
2 3 B 2 states such that the lower state(l 3B 2 ) is now coupled through spin-orbit 
interactions with both ground singlet and triplet s t a t e s ^ A i and X 3 A i ) . 
Compared with the isolated diatomic, spin-orbit transitions should occur at near-
crossings of lower energy in the collision system O 2 ( v » 0 ) + O2(v=0) leading to 
V - E transfer: 

0 2 ( X 3 Σ g , v » 0 ) + 0 2 ( X 3Σ\ ,V=0) => Ο 2 ( ^ Δ # , ν » 0 ) + 0 2 ( X 3 Σ \ ,v=0) 
0 2 ( X 3 Σ g , v » 0 ) + 0 2 ( X 3Σ~ β,v=0) => 02φιΣ g , v » 0 ) + 0 2 ( X 3 Σ g , v = 0 ) 

This finding gives further support to the possible relevance of nonadiabatic 
transitions in explaining the origin of the dark-channel observed in experiments. 
Furthermore this hypothesis can be tested in experiment since the electronically 
excited oxygen molecule formed from the vibration to electronic energy transfer 
could be detected spectroscopically. From the theoretical point of view we have 
started quantum scattering calculations on coupled potential energy surfaces to 
quantify the importance of V - E transfer. 
Once we found evidence for spin-orbit coupling in the 0 4 system within an 
inelastic C 2 v approach it was natural to ask whether other minimum energy paths 
could show similar behaviour. We have calculated(27) the reaction path for the 
reactions leading to ozone formation and chemically bound tetraoxygen: 

0 2 + 0 2 => 0 3 + Ο 

o 2 + 0 2 => o 4 

Additionally we calculated the low-lying excited states and their spin-orbit 
coupling elements with the ground state at selected geometries of the reaction 
path. For the reaction that forms chemically bound 0 4 we find no evidence of 
spin-orbit coupling effects, since there are no near-crossings of the relevant 
electronic states and furthermore the SO matrix elements are negligible. 
The reaction forming ozone proved to be more interesting in this regard and we 
found that in the neighborhood of the saddle point region there appears both a 
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true crossing betv/een singlet and triplet states and appreciable SO matrix 
elements between them which would allow for V - E transfer. This mechanism 
could also be responsible or contribute to the dark channel observed in 
experiments and as noted earlier is subject to experimental verification via 
spectroscopy. From the theoretical point of view quantum scattering reduced 
dimensionality calculations on coupled surfaces are underway to make 
quantitative predictions on the importance of these processes. 

d) Unsolved questions and speculations 

In the previous section we concentrated mainly on the possibility of vibrational 
to electronic energy transfer via spin-orbit coupling and its relevance to the 
unsolved question about the origin of the dark channel observed in experiments. 
Although this problem is still open, from the previous review sections we already 
know of different mechanisms that are contributing to the dark channel and what 
is still lacking is the quantitative determination of the rates for the different 
mechanisms proposed. In this final section I want to briefly mention other open 
problems related to die 0 4 system. 
In 1996 the Wodtke group measured vibrational, rotational and translational 
energy distributions for 0 2(v) coming from the reverse of the ozone forming 
reaction(Rl)(47). To assist in the interpretation of results Schatz performed 
quasiclassical trajectories using the V P potential energy surface. Comparison 
between experiment and theory showed a large disagreement concerning the 
rotational and translational energy distributions, namely, experiment gave much 
colder distributions. Furthermore theory predicted that there should be one 
'spectator bond' in the reaction such that one of the 0 2 molecules formed is in its 
ground vibrational state. From conservation of energy theory predicts a very 
large rotational and traslational energy release. The authors considered that the 
most likely explanation for the observed differences should be a 'breakdown' of 
the spectator bond mechanism,ie, the V P surface incorrectly describes the 
reaction path. Much better agreement with experiment could be obtained 
assuming that both 0 2 molecules emerge highly vibrationally excited(v=10-15) 
but in their ground electronic states. Ab initio calculations of the reaction 
path(27) are consistent with the spectator bond model and this casts some doubt 
on the hypothesis of vibrational excitation on both molecules. Our work(27,56) 
on spin-orbit coupling effects in the 0 4 system points out to another possible 
explanation for the discrepancy observed in the energy distribution: cold 
rotational and traslational distributions could also be obtained if one of the 
oxygen molecules is produced in a low-lying electronic state. This possibility has 
been mentioned(47) but we believe that in the light of our new results, additional 
experimental and theoretical work should be undertaken to clear this point. 
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In 1999 the Wodtke group(57) found a new mechanism which should be 
partially responsible for the dark channel observed in collisions of highly 
vibrationally excited 0 2 . They found that for ν > 23 there are large multiquantum 
transitions(Av = -9) and for states v=28,30 a sizable fraction of the initial 
population decays through this multiquantum transition. No theoretical 
explanation of this puzzling and exciting result has been given so far. The 
formation of a collision complex which could be the chemically bound 0 4 or a 
charge transfer complex(57) could be invoked but this is still speculative since 
no direct evidence of the relevance of such complexes, either theoretical or 
experimental, has been given yet. 
Finally we would like to close this section mentioning an unsolved problem for 
the ozone molecule which is of interest in itself but also is directly related with 
die proper description of the reaction forming ozone(Rl). In spite of its great 
practical importance and rich photochemistry there have been relatively few 
detailed experimental and theoretical papers describing the properties of the 
ground and low-lying excited states beyond the region of the equilibrium 
structures. The group of Peyerimhoff has performed ab initio calculations of the 
potential energy surfaces(5S,59) which show a small barrier for the 
recombination process in the ground electronic state 

0 + 0 2 = > 0 3 (R2) 

Other recent theoretical work still predicts the presence of a barrier (60,61) but 
the level of calculation is not high enough to consider them final. From the point 
of view of experimental evidence the situation is not much better. In fact it has 
been pointed out(62) that even the bond dissociation energy is subject to 
uncertainties of the order of 10-15 %. The rate of reaction R2 has been measured 
as a function of temperature and close to 100 Κ it still increases with decreasing 
temperature(<55) which of course can only be consistent with either a very small 
barrier or non at all. On the other hand from Raman scattering (62) there is 
evidence of vibrational levels of ozone above its dissociation limit. We have 
calculated the potential energy curve for dissociation(fixing the angle at its 
equilibrium value) at die CASMP2 level and found that, although there is a 
barrier at the CAS level, the inclusion of dynamical correlation removes the 
barrier. Although these are preliminary results they clearly point out to the need 
for accurate ab initio calculations to determine the existence or not of such a 
barrier. The proper dynamical modeling of a variety of processes involving 
ozone dissociation and recombination including the strange isotope effect by 
which stratospheric ozone is enriched in the heavy isotopes(64,6J) will depend 
crucially on having a correct potential energy surface and we have started work 
in that direction. 
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Chapter 16 

Model Studies of Intersystem Crossing Effects 
in the O + H2 Reaction 

Mark R. Hoffmann1 and George C. Schatz2,3 

1Department of Chemistry, University of North Dakota, Box 9024, 
Grand Forks, ND 58202-9024 

2Theoretical Chemistry Group, Argonne National Laboratory, Argonne, IL 60439 
3Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 

We use quantum scattering and trajectory surface hopping 
methods to examine the influence of intersystem crossing 
between the lowest energy triplet and singlet states on the 
O(3P) + H2 reaction dynamics. Several two-state reaction path 
models of the potential energy surfaces and spin-orbit coupling 
are studied. In these models, the triplet state curve shows a 
barrier along the reaction path and the singlet state a well such 
that the two states intersect at a location near the barrier top. 
Eleven choices of the parameters in the Hamiltonian are 
examined in which the effect of the triplet-singlet crossing 
location, the singlet well depth, and the size and coordinate 
dependence of the spin-orbit coupling are varied. The 
quantum calculations show that if the crossing occurs on the 
reagent side of the triplet barrier, and the spin-orbit coupling at 
that point is similar to what exists in the reagent Ο atom, then 
the low energy reactivity is dominated by intersystem crossing. 

© 2002 American Chemical Society 329 
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This result is reasonably well described by surface hopping 
within the diabatic representation; the corresponding adiabatic 
representation results are less accurate below the adiabatic 
threshold, but more accurate above threshold. If the crossing 
occurs on the product side of the barrier, as actually occurs for 
the O + H2 reaction, the influence of intersystem crossing is 
much smaller, though not completely. The influence of 
Stuckelberg interference effects on the state-resolved reaction 
probabilities is also studied. 

Although spin-orbit induced intersystem crossing is an old subject that has 
long been studied in photochemistry and photophysics, its influence on small 
molecule bimoiecular reactions has received less attention. Such effects show up 
most commonly when the ground state of the reactants involves a triplet (or other 
high spin) potential surface (such as in the reaction of a triplet atom or molecule 
with a singlet molecule), while products correlate to both singlet and triplet 
states (such as is obtained from a doublet + doublet combination), thereby 
providing two pathways for reaction, a triplet spin-allowed path and a singlet 
spin-forbidden path. Often the singlet path involves the formation of a stable 
intermediate, while the triplet occurs over a barrier, so the reaction dynamics 
associated with these paths is quite different. In addition, the spin-forbidden 
path can in some cases take place over a lower barrier than the spin-allowed 
path, so the forbidden path could, in principle, dominate the dynamics. 

There have been several experimental and/or theoretical studies during the 
past 10 years involving intersystem crossing effects in bimoiecular reactions of 
0(1-3), NH(4), CH2(5-7), S(8) and CH(9,10). Important spin-forbidden effects 
have been observed for reactions involving iodine(i), however little is known 
about reactions involving lighter atoms where the allowed and forbidden 
pathways compete. 

Recently, Hoffmann and Schatz(ll) have developed a new level of 
treatment of spin-orbit effects in bimoiecular reactions which enables a more 
sophisticated treatment of intersystem crossing dynamics than in the past. In this 
treatment high quality electronic structure methods are used to determine global 
surfaces for the reaction and spin-orbit matrix elements, and then trajectory 
surface hopping (TSH) methods are used to determine properties of the 
bimoiecular collisions such as reactive cross sections and state distribution 
information. In an application of this theory to the Ο + H 2 reaction, the spin-
orbit matrix elements were determined as a function of position, and then T S H 
calculations were done within a diabatic representation to determine cross 
sections. Intersystem crossing effects were found to be small for Ο + H 2 due to 
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the fact that the crossing of the singlet and triplet surfaces occurs in the product 
region, making it hard to access geometries where hopping can occur. In 
addition the spin-orbit coupling is small, which means that the hopping 
probability is small. However the small fraction of trajectories that do undergo 
surface hopping have significantly different product state distributions than those 
which do not. 

The Hoffmann-Sehatz (HS) work raises some important questions in the 
description of nonadiabatic dynamics that go beyond the original work. HS 
found that for Ο + H 2 the triplet and singlet surfaces interact strongly in two 
places: where they cross near the barrier top, and where they become degenerate 
in the product region. The accuracy of T S H methods for this class of problems 
has not been described earlier, but HS found that unphysical results (excessively 
large cross sections) were obtained if T S H calculations were done in the 
adiabatic representation (a method that we denote TSH-A). Diabatic 
representation results (i.e., TSH-D) were more reasonable, but comparisons with 
quantum dynamics calculations were not performed, which means that the 
accuracy of the calculation is not known. In addition, the importance of 
interference in the coupled surface dynamics, something that would be 
imperfectly described using TSH-A or TSH-D, was not considered. 

In this paper, we compare quantum scattering, TSH-A and TSH-D results 
for several two-state reaction path models which describe the Ο + H 2 reaction, 
and related reactions. Eleven model potentials have been considered, so as to 
determine the influence of triplet-singlet crossing location, the singlet well depth, 
and the size and coordinate dependence of the spin-orbit coupling. 

Theory 

In this section, we first describe the model Hamiltonians, and then the 
quantum and T S H nonadiabatic dynamics calculations that were performed. 

Model Hamiltonians 

The model Hamiltonians are designed to mimic the lowest energy triplet and 
singlet potential surfaces for Ο + H 2 along the minimum energy path of the 
triplet. As described by HS, the triplet state (1 3A") has a collinear reaction path 
(1 3 Π symmetry) that correlates with 0( 3 P)+H 2 and ΟΗ( 2 Π)+Η for reactant and 
product configurations, and with a linear O-H-H barrier (no wells) between these 
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limits. The singlet state (1 *A') correlates with 0( 1 D)+H 2 and ΟΗ( 2Π)+Η. It has 
a bent reaction path, and for C 2 v geometries there is a deep intermediate well 
(with no barrier). To develop a reaction path model that has this behavior we 
take the triplet potential to be an asymmetrical Eckart barrier function of the 
type: 

ν"-τή^+—B-— 
1 + 6 [2 cosh -ax]2 

2 

where χ is the distance along the reaction path (not mass weighted) and the 
parameters A , Β and a are given below. The singlet surface is also written as an 
Eckart function: 

V , = A£ + C

H , . n * f 2 <2> 
1 + ' [2 cosh - i > ( * + f)]1 

2 

with parameters ΔΕ (the Ο atom singlet-triplet splitting), C, D, b and f, but here 
the parameters are chosen so that the potential exhibits a well rather than a 
barrier. The triplet-singlet coupling is assumed to be governed by a simple 
switching function of the type: 

V2l =^[l + tanh £(* + /*)] (3) 
4 

where s, g and h are additional parameters. In order to specify the 11 parameters 
in terms of physically meaningful quantities, we use the formulas in Eq. (4) 
below. With these definitions, the parameter C is no longer independent. 
Instead, the independent parameters are: A (exoergicity on the triplet surface), 
V b (the triplet barrier), ΔΕ (defined above), a (triplet barrier width), b (singlet 
well width), g (determines how quickly the spin-orbit coupling is switched on as 
one moves from the reactants to the crossing point), w (singlet well depth), 
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5 = - ( - v W v 2 - 4 Â 2 ) 
2 

C = A-AE 

v = 2A-4Vb 

D = i ( - v W v , 2 - 4 C 2 ) v'=2C-4(w-AE) 

f (determines the singlet-triplet crossing location, with x=0 corresponding to the 
triplet barrier location), s (magnitude of spin-orbit splitting) and h (determines 
where the spin-orbit coupling is turned on relative to the barrier at x=0). To 
simplify the parameters, we fix the first six parameters with the following values 
(modeled to mimic Ο + H 2 for slightly bent structures (where the triplet-singlet 
crossing is more accessible than for linear geometries) with roughly the right V b 

and ΔΕ): A = 0.003187, V b = 0.03187, ΔΕ = 0.06374, a = 1.5, b=1.5, g = 1.0. 
These values are in atomic units, and we will use these units throughout the 
paper. The remaining four parameters are given in Table 1 for the eleven 
models that we have considered. Figure 1 plots V n , V 2 2 and V 2 i as a function of 
x. Here is a summary of what each model does: 

Model 1: Crossing is on the reagent side, coupling is turned on at the crossing 
point. 
Model 2: Same as Model 1 except that the coupling is turned on after the 
crossing. 
Model 3: Same as Model 1 except that the crossing point is moved to the product 
side of the barrier. 
Model 4: Same as Model 3 except that the coupling is turned on after the 
crossing. 
Model 5: Same as Model 2 except that the well depth is doubled. 
Model 6: Same as Model 1 except that the well depth is doubled. 
Model 7: Same as Model 1 except that the coupling is three times larger. 
Model 8: Same as Model 2 except that the coupling is three times larger. 
Model 9: Same as Model 2 except that the coupling is turned on further to the 
products. 
Model 10: Same as Model 1 except that the crossing point and coupling are 
shifted further to the reactants. 

Model 11 : Same as 1 except that the crossing is right at the barrier top. 

Quantum Scattering Calculations Two-state quantum scattering calculations were done using a time-
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Table 1. Parameters associated with the Model Hamiltonians 

Model Well depth 
M 

Crossing 
point shifiCf) 

Spin-orbit 
splitting(s) 

Coupling shift 
(h) 

1 -0.0319 0. 0.4 2.0 
2 -0.0319 0. 0.4 0.0 
3 -0.0319 -2. 0.4 2.0 
4 -0.0319 -2. 0.4 -2.0 
5 -0.0637 0. 0.4 0.0 
6 -0.0637 0. 0.4 2.0 
7 -0.0319 0. 1.2 2.0 
8 -0.0319 0. 1.2 0.0 
9 -0.0319 0. 0.4 -2.0 
10 -0.0319 1. 0.4 3.0 
11 -0.0319 -1. 0.4 1.0 

independent coupled channel method that is similar to a code that is described by 
Schatz (12). In this code the Schrôdinger equation for the two states is solved 
by sector propagation, integrating from χ = -10 to χ =6, using a step size of 0.01. 
The reduced mass in the calculation is 1 A M U (1732 atomic units) which is 
approximately the mass of hydrogen. By propagating one set of independent 
solutions from negative χ to positive χ and then a second set from positive to 
negative, a complete set of linearly independent solutions is obtained, and then 
this is matched to proper asymptotic solutions to determine the scattering matrix 
and the reaction probabilities. Tests of convergence of these probabilities 
indicate that they are converged with respect to the integration parameters. 

Trajectory Surface Hopping Calculations 

T S H calculations were done using the fewest switches method (13). Details 
are similar to work that was described earlier (11), except that here we have 
considered calculations in both the diabatic and adiabatic representations. A 
time step of 1 atomic unit was used for all calculations, and 2000 trajectories 
were used to determine the reaction probabilities at each energy. Variation of 
the results with respect to the numerical parameters was within statistical 
uncertainty. We found the diabatic results to be significantly less sensitive to 
time step than the adiabatic results. 
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Results 

Figure 2 presents quantum reaction probabilities versus energy for each 
of the eleven models. These probabilities refer to the triplet (lower) initial state, 
and the two probabilities, labeled P n and P î 2 , are for reaction to give the lower 
and upper final states, respectively. Note that the final states are defined in the 
adiabatic representation, and are roughly equal mixtures of singlet and triplet 
states that approximate the 2 Π 3 / 2 and 2 Π ι / 2 states of OH. Linear and semilog 
plots are included for each model, so as to show both the below-barrier 
(E<0.03187) and above-barrier results. A summary of the results is as follows: 

Model 1: This shows a large hump near E=0.022 which corresponds to the 
intersection energy between the two states in Fig. 1. At this energy each of the 
probabilities rises to about 0.01, then they drop to a minimum before rising at 
E=0.032 to values which oscillate around 0.5. The low energy hump is clearly 
an indication of a reaction that is dominated by intersystem crossing, while the 
high energy behavior is dominated by single surface dynamics, with Stuckelberg-
like oscillations that probably arise from interference with the small reactive 
amplitude on the other surface. 

Model 2: The coupling at the intersection is much smaller in this model 
than in Model 1, so the hump is much less important, and so are the oscillations 
at high energy. 

Model 3: Here the crossing occurs in the product region, so even though the 
coupling is large at the crossing, the influence of surface hopping is much 
smaller, and no hump is seen. However the oscillations are still important, 
indicating that hopping occurs in the product region. 

Model 4: The only coupling in this model is in the product region, so the 
results are completely dominated by single surface dynamics. However the two 
product states are equally probable, indicating that there is complete mixing of 
the final states. 

Model 5: Here the deeper well causes the crossing to be in the reagent 
region, but the coupling is small. A hump is seen at E=0.017, but the probability 
at the peak is small. 

Model 6: This is similar to Model 5 but now the coupling is larger, and the 
hump peaks at close to 0.01. 

Model 7: The larger coupling, compared to Model 1, leads to much larger 
probabilities at the hump, close to 0.1, and larger oscillations at high energy. 
The larger coupling used in this model is designed to mimic intersystem crossing 
for second row atoms such as sulfur. 

Model 8: Here the coupling is large as with Model 7, but it is not turned on 
near the crossing so the hump is now much smaller than for Model 7. 
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Figure 2. Quantum reaction probabilities Pu (solid) and Pl2(dashed) 
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Figure 2. Continued. 

Figure 2. Continued on next page. 
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Figure 2. Continued. 
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Model 9: The coupling is so small at the crossing that the hump has almost 
disappeared and the results are close to those in Models 3 and 4. 

Model 10: In this model, the crossing has been moved to roughly Ε = 0.01, 
and the first hump is seen at that energy, with a peak probability that is close to 
that for Model 1. Additional humps are seen below the barrier energy. 

Model 11 : This shows that when the crossing is at the barrier top, the hump 
from intersystem crossing is mixed up with the classical threshold. 

Figure 3 summarizes results from the TSH-A and TSH-D calculations, along 
with the corresponding quantum results, all for Models 1 and 7. We chose these 
two models, as the crossing occurs before the barrier in these models, leading to 
significant nonadiabatic dynamics at energies below the barrier energy. Here we 
mainly focus on the behavior of the probabilities below the classical threshold. 
Above the threshold we find that the two T S H probabilities are unity, with the 
TSH-A probability mimicking the quantum results reasonably well, without, 
however describing the Stuckelberg oscillations, while the TSH-D probabilities 
predict that Pn is close to unity and P J 2 close to zero. The error in TSH-D here 
is due to the fact that the product asymptotic states, which are defined in the 
adiabatic representation, are not correctly described in the diabatic 
representation. 

Figure 3 shows that at energies below the triplet barrier, the TSH-D 
probabilities have broad humps that are similar to the quantum results, except 
that the Stuckelberg interference oscillations are not correctly described. The 
problem with interference oscillations is to be expected, as the T S H model does 
not describe the coherence that would be associated with trajectories that react 
via the two pathways that are available. However the TSH-D results do predict 
approximately the correct peak probabilities, and the change in the probabilities 
that occurs in going from Model 1 to 7. 

The TSH-A results, by contrast, are seriously in error. The total reaction 
probability jumps to unity at an energy of roughly 0.02, indicating that 
trajectories with a turning point exactly at the crossing point of the two surfaces 
react with a probability of close to unity, while those with higher or lower 
energies do not react at all. This poor behavior of the adiabatic results arises 
because although the surfaces are weakly coupled in the diabatic representation, 
they are strongly coupled in the adiabatic representation, and the T S H algorithm 
is unable to describe the coherence effects needed to describe this coupling 
accurately. 

Conclusion 

This paper has provided several important results pertaining to intersystem 
crossing effects in coupled singlet-triplet problems similar to Ο + H 2 . First we 
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used quantum scattering calculations to demonstrate that if the two states cross 
on the reagent side of the triplet barrier (as in models 1,2,5-10), then the low 
energy dynamics is dominated by reaction on the singlet state. The energy where 
this occurs is closely related to the energy of the crossing, and the size of the 
peak probability in this limit is determined by the size of the coupling at the 
crossing (compare models 1,2 and 9, or models 1 and 7, for example). Models 
for which the crossing occurs on the product side of the barrier (models 3,4) are 
dominated by adiabatic dynamics at energies below the barrier energy. Although 
this is a less interesting situation with respect to the importance of nonadiabatic 
dynamics, the models are still important, as the true potential surfaces and 
couplings for Ο + H 2 are closer to model 3 than to any of the other models 
considered here. 

Additional results of this study were concerned with the use of T S H 
methods to describe intersystem crossing dynamics. We find that the TSH-D 
method is capable of determining reaction probabilities of reasonable accuracy 
for two models (1 and 7) where intersystem crossing is dominant, but TSH-A 
seriously overestimates these probabilities. This conclusion supports the 
interpretation of HS, who used TSH-D in preference to TSH-A in their full 
dimensionality calculations on Ο + H 2 . 

Finally, we see that Stuckelberg oscillations can occur as a result of 
interference between scattering on the two coupled surfaces. This effect is most 
likely exaggerated by the one dimensional model used here, and in all cases this 
plays a secondary role in determining the importance of intersystem crossing on 
the dynamics. T S H methods do not describe these effects correctly, so there is a 
need for higher quality semiclassical methods if one wants to describe fine 
details of the reaction dynamics. 
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Chapter 17 

The Challenge of High-Resolution Dynamics: 
Rotationally Mediated Unimolecular Dissociation 

of HOCl 
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Richland, WA 99352 

We review methods to calculate molecular resonances (also 
known as quasibound states), and illustrate them for the 
unimolecular dissociation of H O C l --> Cl+OH, for which 
recent experiments have found dramatic fluctuations of the 
dissociation rate for HOCl(6vOH) with the rotational quantum 
numbers J and K . The calculations do capture the large 
fluctuations of the dissociation rate with respect to the H O C l 
total angular momentum, and a simple, general model is 
presented to rationalize these results. Calculated rates are also 
presented for HOCl(7vOH and 8vOH) and compared with very 
recent experiments. Limited, new calculations of HO37Cl 
dissociation show a dramatic isotope effect on the dissociation 
rate. 

346 © 2002 American Chemical Society 
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Introduction 

Unimolecular reactions are an important and ubiquitous process in 
chemistry. The textbook treatment of such reactions is based on a 
mierocanonieal, statistical theory such as R R K or R R K M theory (1). These 
theories apply to an energized molecule with energy in excess of say the 
dissociation energy of some fragment channel, or an isomerization process. 
Thus, these theories are not appropriate for a state-specific, unimolecular 
process, where the term state-specific refers to the energized molecule in a 
single quantum state. Such states are referred to as resonances. These 
metastable quantum states form the rigorous foundation of unimolecular rate 
theory, and this is the focus of this chapter. The relationship between these 
quantum states and statistical theories have been explored by a number of 
authors, and a recent, elegant approach to this relationship has been presented by 
Miller and co-workers (2), based on "random matrix" theory. 

Experimentally, it is difficult to prepare a molecule in a specific quantum 
state from which a unimolecular process can occur, and this has only been 
achieved in rare cases. One very striking recent example of this are the beautiful 
experiments done by the Rizzo (3-6) and Sinha (7,8) groups on the unimolecular 
dissociation of HOC1 (to form OH+C1) prepared in high OH-overtone states 
with complete rotational resolution. The most extensive experiments done by 
these groups determined the unimolecular dissociation lifetimes for rotating 
HOC1(6V 0H) as a function of J and K. In general, the lifetimes were determined 
to be of the order of hundreds of microseconds, depending on J and K , 
corresponding to a resonance width of the order of 10"4 cm"1. Further the 
lifetime showed significant and intriguing fluctuations with J and K . 

These experiments stimulated theoretical work by us (9-14), independently 
by Schinke and co-workers (15-17), and recently both groups (18) to rigorously 
model this unimolecular dissociation. Ab /mft'o-based potential energy surfaces 
were constructed by these groups, and used in quantum dynamics calculations 
to obtain the real energies and widths of the HOC1 resonances for OH-overtones. 
The results of our calculations and their interpretation wil l be reviewed below. 
However, before describing that work, we present a short overview of the 
theory and calculation of unimolecular resonances. 

Short review of resonance theory and calculations 

Resonances are eigenstates of a molecule that are not stationary in time, but 
which are nevertheless initially highly localized in space. The eigenenergies of 
resonances are complex, with the real part being the physical energy of the 
resonance and the imaginary part related simply to the width (see below). 
Generally the imaginary part is much smaller in magnitude than the real part. 
These complex energies form a discrete spectrum, and thus resonances share 
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some characteristics in common with true bound states, and for that reason they 
are also referred to as quasibound states. This picture of resonances applies to 
non-overlapping resonances, where non-overlappping refers to resonances 
where the real part of the resonance energies of adjacent resonances are 
separated by many times the magnitude of the imaginary part. If this criterion 
does not apply then some of the simple characteristics of resonances 
summarized below may not hold, and so we will restrict the discussion to non-
overlapping resonances. 

In the time-dependent picture, the resonance wavefunction is given 
byΨ(ί) = Ψ(0)βχρ[-ΐ(Ε-ΐΓ/2)ί,where Ε - ϊΓ/2 is the complex energy 
eigenvalue of the resonance, mentioned above. Ψ(0) is the resonance wave 
function at t = 0. Under "low resolution" Ψ(0) looks like a bound state, but 
under "high resolution" this wavefunction actually has an oscillatory "tail" in the 
asymptotic region describing one or more dissociation channel. This split 
personality of resonances wavefunctions makes them fascinating to study, but 
also makes their calculations quite difficult, because they span a large region in 
configuration space. A n example of a molecular resonance wavefunction that 
displays this behavior is shown in Fig. 1. As seen in this case, the "tail" is of 
much smaller magnitude than the main portion of the wavefunction which is 
located in the bound, strong interaction region of space. 

The first rigorous calculations of molecular resonances were done using 
coupled channel scattering methods. This approach, while completely rigorous, 
is difficult and laborious, because it requires a search for the scattering energies 
that produce abrupt changes in the phase of the scattering matrix (19). 
Currently, L 2 methods that obtain resonance energies and wavefunctions directly 
are commonly used. These methods are like bound-state approaches, but differ 
from them in two essential ways. First, a basis in the dissociative degree(s) of 
freedom must extend to the non-interacting region. (This is not necessary for 
ordinary bound state calculations.) Second, a method must be introduced to 
accurately describe the exponential decay of the wavefunction in time. This can 
be done by explicitly propagating a wavepacket with a damping function that 
acts in the near asymptotic region, or by the analytic continuation of the 
Hamiltonian, H , to the complex plane. The latter approach has been used for a 
number of years by either the complex coordinate method (20), and more 
recently by the introduction of negative imaginary (absorbing) potentials in the 
near asymptotic region. It appears that the use of negative imaginary potentials 
for the explicit calculation of molecular resonances was first introduced by 
Jolicard and Leforestier (21). Since we use negative imaginary potentials in our 
calculations, we present some the details of their use next. 

Negative imaginary potentials are introduced to deal with the problem of 
reflection of the wavefunction from the edges of a finite grid or L 2 basis (22). 
Thus, these potentials are only non-zero in the asymptotic region and within 
several deBroglie wavelengths of the end of the grid. For molecular resonances 
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_0 Q2 > 1 1 1—-I i i i i i l i i i . i l I t I I I I 1 1 1 1 1 1 1 u 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 

R (bohr) 

Fig . l Radial part of resonance wavefunction clearly showing bound state 
charatcter in the strong interaction region and oscillatory, continuum 
character in the non-interacting region. 
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with a single fragmentation channel an often used form of the negative 
imaginary potential -iU(R) is 

0. R<Rmi„ 

{ U(R)=\ R _ R ' ( 1 ) 

M _j )",R> Rmin 
where R is the distance between the centers of mass of the fragments. For a 
triatomic molecule that breaks up into an atom A and a diatomic B C , R is the 
distance between A and the center of mass of B C . Note that R m i n denotes the 
boundary between the interacting and non-interacting region. Of course there is 
not a sharp boundary between these two regions, and so typically R m in is in the 
region where the interaction potential is say 10"4 times the real part of the 
resonance energy (or smaller). Also R m i n is usually only several bohr from the 
end of the range in the coordinate R, denoted R m a X . Negative imaginary 
potentials are also referred to as absorbing potentials, because the wavefunction 
decays in the region where they exist. In time-dependent propagation methods 
this decay of the wavefunction prevents unphysical reflection of the wave packet 
from the grid boundary. In time-independent methods, such as we describe the 
absorbing potential enforces the correct outgoing wave boundary condition of 
the wavefunction. This condition is not perfectly met for any absorbing 
potential, and some incoming wave component of the wavefunction is present 
(due to reflection). In practice the parameter λ in Eq. (1) is varied to minimize 
the incoming wave amplitude, as determined from a complex stabilization 
criterion (21). An example of this behavior will be given below. 

To summarize the approach thus far, the eigenvalues (and optionally the bi-
orthogonal set of eigenfunctions) of the complex Hamiltonian, Η^λ) = Η-ΐϋ(λ) 
are obtained over a range of the parameter λ Stable eignevalues are associated 
with resonances. If eigenfunctions of H or even of Η are obtained these can 
also be examined to determine if they have the expected properties of 
resonances, e.g., highly localized in the strong interaction region. 

It is also possible using the L 2 approach to obtain the distribution of the 
internal states of the products of the unimolecular dissociation The rigorous, 
asymptotic (R goes to infinity) form of the resonance wavefunction for a 
triatomic molecule at the energy E i f is given by 

¥~lSvjme^R\vjm), (2) 
vjm 

where |v/Vn)is a given ro-vibrational state of the diatomic fragment, kvj is the 

corresponding wavnumber, and SVjm is the amplitude for the resonance to decay 
into that state. The asymptotic form of the complex L 2 eigenfunctions, given by 
Eq. (2), can be used directly to obtain the unknown amplitudes SVjm. Even the 
real L 2 eignefunctions can be used to approximately obtain the Svjm. In our 
computational approach, described in detail below, we do calculate the real L 2 
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eigenfunctions of the real Hamiltonian, but generally do not obtain the complex 
ones. In this case the complex exponential in Eq. (2) is replaced by sin(kVJR) and 
the amplitudes Svjm are real. The analysis to obtain the Svjm is straightforward; 
the internal state \vjm) is projected onto the real L 2 eigenfunction representing 
the ith resonance, and then the resulting R-dependent amplitude is analysed in 
the asymptotic region to obtain the corresponding Svjm (The wavefunction 
shown in Fig. 1 is actually the R-dependent amplitude of an L 2 resonance 
eigenfunction for zero.) 

We now describe the details of the calculation of resonances of HOC1, the 
comparison with experiments reviewed above, and the interpretation of some of 
the results. The rigorous calculation of resonances requires an accurate, full 
dimensional potential energy surface. We briefly describe this crucial 
component of the dynamics calculations next. 

Potential Energy Surface for HOCI 

The ab initio electronic structure calculations were carried out with the 
MOLPRO suite of programs (23). Electron correlation effects were treated using 
highly correlated internally contracted multireference configuration interaction 
(icMRCI) wave functions (24,25). The reference function in the icMRCI 
calculations consisted of a full valence complete active space (CAS), i.e., 14 
electrons in 9 orbitals. A l l single and double excitations with respect to this 
function were included in the final MRCI and the doubly external configurations 
were internally contracted. The core orbitals were not correlated (frozen core 
approximation). To approximately account for higher excitations, the 
multireference analog (26,27) of the Davidson correction (28) was also 
employed throughout (icMRCI+Q). 

The basis sets used in the construction of the PES for HOCI were based on 
the correlation consistent basis sets of Dunning and co-workers (29-31), denoted 
cc-pVnZ with η-Ώ, Τ, Q. As is now well known, calculations with the 
correlation consistent basis sets exhibit systematic convergence toward the 
apparent complete basis set (CBS) limit. The basis set convergence of the total 
energies has been modeled in this work by a simple extrapolation formula to 
obtain estimates of the energy in the CBS limit (32). For the present work, each 
of the points on the potential energy surface was calculated with three basis sets. 
These consisted of the cc-pVDZ, cc-pVTZ, and cc-pVQZ sets augmented with 
diffuse functions of spd symmetry for Ο and CI and sp symmetry for H . The 
diffuse functions were taken from the standard aug-cc-pV«Z basis sets (30,31). 
In addition, in the present work the cc-pV«Z+diffuse spd basis sets were 
augmented with a single tight d function. The systematic behavior of these basis 
sets was then exploited by extrapolating each point on the PES using Eq.(l). 
The final result was an approximate CBS limit PES. 
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Several potential surfaces have been developed based on these calculations. 
The one used in the most recent resonance calculations was adjusted slightly 
(13) to give spectroscopically accurate agreement with experiment for 
vibrational energies. Another, global potential including the 0( !D)+HC1, 
CIO+H channels, as well as the HCIO isomer, has also been developed based on 
the above ab initio calculations (33). 

Finally note that the possible importance of electronically excited states was 
considered in these calculations. Conical intersections with excited states were 
found at the two linear geometries (9). However, these were all at energies 1 eV 
or greater above the dissociation energy of HOCI, and well above the energy of 
the dynamics calculations reveiwed below. In addition the resonances of 
relevance to experiment have no bending excitation and so do not sample the 
relevant linear geometries. Thus excited electronic states were not included in 
the dynamics calculations. 

Computational details and results for HOCI resonances 

The calculation of energies and widths of the resonances of HOCI was 
done using the complex L 2 method outlined in the previous section. In our 
particular implementation we used an efficient truncation/recoupling procedure 
(10,11) to obtain eigenvalues and eigenfunctions of the real Hamiltonian. The 
Hamiltonian for the HOCI dissociation is given in standard body-fixed Jacobi 
coordinates . For zero total angular momentum, J, it is: 

HJ=0 = TR + Tr + j2°p + V(R,r, γ), (3) 
R r 2I(r,R) 1 U 

where R is the distance between CI and the center of mass of O H and r is O H 
intemuclear distance, and yis the angle between the corresponding vectors R 
and r . T R and T r are radial kinetic energy operators for the variables R and r, 

jopis the square of the O H angular momentum, where the body-fixed z-axis is 
along the vector R, and V is the M l potential. 

For non-zero total angular momentum, J, and in particular for J in the range 
of the experiments on HOCI, i.e., J greater than 20, exact calculations are 
prohibitively expensive for us. But, based on limited exact calculations that we 
have done, and also on experiment, HOCI behaves as a nearly symmetric prolate 
top, with Κ (the projection quantum number of J on the a-axis) a nearly good 
quantum number. Thus, we used an approximate, "adiabatic" treatment of 
rotation that assumes Κ is a good quantum number (34). In this approximation, 
the Hamiltonian for any J and Κ is given by 

HM = HJ=0 + EJK (R,rj), 
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where HJ 0 is given by Eq. (3), and. EJK is the symmetric top rotational energy 
given by 

EJK(R,r,Y) = B(R,rj)J(J + l) + [A(R,rj)-B(R,rj)]K2. 
This energy is obtained by determining the rotation constants in the principal 
axis system at each nuclear geometry. (Limited tests of this approximation for 
bound states of HOC1 indicate that it is accurate to within several wavenumbers 
for ro-vibrational energies for J as large as 30 (35).) 

The complex Hamiltonian for a given J and Κ is HM - ill, where U is 
given by Eq. (1). Matrix elements of the complex Hamiltonian are obtained in 
the basis of real eigenfunctions of HM, and thus they are given by 

where E3£ are the real energy eigenvalues ofHM. We experimented with 
values of 2 and 3 for η in Eq.(l) and also with the value of Rmin_ and Rmax. 
Because Rmin must be large enough for the true interaction potential to be very 
small, matrix elements of (ψ^\υ\ψ„κ^ involving low-lying, localized bound 

states are negligible, and so those states were not used in the construction of the 
complex Hamiltonian. This results in a fairly small complex diagonalization 
problem (of the order of rougly 1000) relative to the real one (of the order of 
roughly 14 000). In the present calculations Rmin was either 12.0 or 13.0 bohr 
and Rmaxwas either 14.0 orl4.5 bohr 

The diagonalization of the complex Hamiltonian was repeated using 
different values of λ. For a resonance state, the complex energy should tend to 
constant when λ increases, and thus âE/άλ should be zero for resonance states 
over a fairly large range of λ. Thus a plot of the complex energy as λ varies 
should exhibit a cusp. This relationship is not satisfied exactly in numerical 
calculations, as illustrated in Fig. 2 for the VOH = 8 ( J = Κ = 0) resonance, where 
λ varies from 6561 to 50 625 cm" 1. As seen the complex energy is 
approximately stationary at the value (24176.62 cm" 1, -0.277 cm"1). The 
imaginary part corresponds to a width of 0.55 cm"1, in good agreement with the 
experimental estimate of I cm"1 (6). 

Variation of 6V G H resonance width with total angular momentum 

The variation of the resonance width with J and Κ for the fifth overtone of 
the OH-stretch that was seen experimentally (3-8) has also been found in 
calculations by us and by Schinke and co-workers . The widths are very small, 
i.e., of the order of 10"4 cm"1, with a large variation with J and K , suggesting a 
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-0.260 
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Fig.2 Plot of the complex energy of the 8VOH resonance of HOCI as the strength 
of absorbing potential, λ (in cm"1) varies, as indicated. 
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very non-statistieal decay mechanism. Given that dissociation from the state 
6V 0 H (J, K) occurs just above the dissociation threshold energy, this result is not 
very surprising. 

Previously (12), we gave a simplified explanation of this variation, based on 
a first-order perturbation theory argument, which we summarize here. The 
mixing of the state 6V 0 H with dissociating states is mediated by rotation through 

a term given by V /(E^ - EJ

dfss), where E^ and EJ£S are the energies of 

6V 0 H and dissociating states, respectively. Obviously, when these energies are 
equal the mixing is a maximum and the width wil l show a local increase. 
Assuming that the J and K-dependence of the ro-vibrational energy of molecular 

eigenstates is given by Ef=0+BtJ(J ' +1) + (A^B^K2', where E/=0 is the 
exact energy eigenvalue for J = Κ = 0, and Bi and AT are the associated rotation 
constants, it is clear that the " diabatic crossings" with a bath of dissociative 
states occur at different values of J and K. This follows since dissociative states 
have large OCl-stretch excitation and thus a correspondingly small values of Β, 
compared to that of 6VOH> A schematic picture of these crossing is shown in 
Figure 3 for Κ = 0.. As seen, dissociateve states 'tune in ' and 'tune out' of energy 
resonance with 6VOH with J, resulting in large variations of the width. (Note the 
argument still applies for any value of K.) 

The above picture of diabatic crossings is clearly oversimplified, because 
the "bath" of dissociative states are strongly interacting among themselves, and 
so the actual interactions among them and the 6VOH state are quite complex with 
many avoided crossings as J and Κ vary. A more sophisticated model that 
captures this complexity was also developed by us previously (12). In brief, it 
consists of the following model complex Hamiltonian 

Hi = Ef/Sij + AB[J(J + 1)- J0(J0 + 1)]δ9 + V, 

where E»° are complex eigenvalues for some reference value of J, denoted J Q, 
ABi is the difference in the rotation constant between the dissociative states and 

the 6VOH state (which for simplicity we take to be a constant), and Vy is the 
coupling between the states, which we also take to be a constant, V, for any pair 
of states. We took as the zero-order basis the 6VOH state and 100 states with 
energies nearest to the 6VOH energy for Jo = 24 and Κ = 3 and diagonalized the 

complex Hamiltonian H^. The constants AB and V were varied to achieve 
semi-quantitative agreement with experiment and values for V = 0.05 cm"* and 
AB =0.1 cm~* were obtained. This value for AB is very much in accord with 
our calculation of Β -constants for the state 6V 0 H and highly excited ClO-stretch 
states. The coupling constant of 0.05 cm"1 is also in good accord with the our 
analysis of rotation induced coupling for bound states of HOCI (35). 
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Fig.3 Schematic plot of the variation of the energies of state 6VOH and 
dissociative states with J. 
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To conclude this section, we note that the above rotation-induced coupling 
mechanism suggests that the dissociation lifetime might be sensitive to isotope 
effects. We examined this in a very preliminary way for H 0 3 7 C 1 , which is 
naturally present in the experiments, by repeating our calculations for this heavy 
isotope of CI for 6V 0 H - The results, shown in Table I, are striking: the lifetime 

37 

of HO CI is more than 10 times longer for the same values of J (and Κ = 0) 
than for H 0 3 5 C 1 . This appears to be in qualitative agreement with preliminary 
observations of Sinha and co-workers, who had difficulty measuring the 
dissociation rate of HO 3 7 Cl(K=0) because of its apparently longer lifetime than 
H0 3 5 C1 (K=0) (36). 

7 v O H and 8 v O H resonances 

The widths of the 7 v 0 H and 8v O H resonances have recently been inferred by 
Callegari et al. (6), from line broadening measurements. As expected, the 
widths for these high overtones are much larger than for 6v 0 H> which is just 
above the dissociation threshold energy. 

We recently reported calculations of these resonances for J = 0 (14). The 
width for 8 V 0 H was plotted in Fig. 2 as a demonstration of the stability of the 
calculated results with respect to the strength of the absorbing potential. As 
noted, the stabilized value 0.55 cm"1 is in good agreement with the experimental 
estimate of 1 cm"1. The width for 7V 0 H was calculated to be 0.01 cm"1, which is 
also in good agreement with experiment. Recent calculations of Schinke an co
workers obtain simililar values for these widths (18). 

In addition to calculating the widths of these resonances, the distribution of 
OH states was also calculated using Eq. (2) and the methods describing how that 
equation is used. For the 7VOH resonance only the ground vibrational state of 
OH is energetically open, and the OH rotational distribution is predicted to be 
inverted with a maximum Ν = 5. For the 8 v 0 H resonance, O H is predicted to be 
rotationally excited for both the ground and first excited vibrational states, with 
more rotational excitation for v O H =0 than v 0 H = 1. Also, O H is predicted to be 
formed with a significant population in ν = 1. The branching ratio ν = 1: ν =0, 
summed over rotational states is roughly 1:2. 

Summary and conclusions 

We reviewed the theory and methods to calculated unimolecular 
resonances, and presented calculations for HOC1. The calculations were 
stimulated by high resolution experiments that determined the resonance 
lifetimes for precise rotational states of HOC1 in high OH-stretch overtones. 
The calculations, which made use of a very high quality potential energy 
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Table I. Calculated widths (cm*1) of H 0 3 5 C 1 and H O C for indicated values 
of J for Κ = 0. 

J H 0 3 5 C 1 H 0 3 7 C 1 

22 6.0e-06 7.6e-06 
24 3.8e-05 8.0e-04 
26 2.2e-04 6.8e-06 
28 9.0e-03 l.le-06 
30 1.9e-03 8.0e-06 

surface, were able to capture the marked variation of the widths of 6VOH with 
total angular momentum. A simple model was also reviewed to rationalize this 
variation. Widths of the higher energy resonances 7V 0 H and 8V 0 H resonances of 
non-rotating HOC1 were reported using the same potential energy surface. The 
calculated widths are approximately 0.01 and 0.6 cm"1, respectively, in good 
agreement with recent experiments of Callegari et al. These widths are 
significantly larger than the one measured and calculated previously for 6V 0H-
The large increase of these widths is not unexpected and is presumably due to 
both an increase in the density of states, and coupling, with increasing energy. 
Finally, limited calculations of resonance widths were reported for 
H037C1(6VQH>J,K) and found to significantly smaller than those for H0 3 5 C1. 
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Chapter 18 

The Electronic Adiabatic-to-Diabatic Transformation 
Matrix and the Irreducible Representation 

of the Rotation Group 

Michael Baer 

Department of Applied Physics, Soreq NRC, Yavne 81800, Israel 

In this publication we consider the electronically multi-fold 
degeneracy with the aim of revealing the connection between 
the adiabatic-to-diabatic transformation matrices and 
Wigner's irreducible representation of the rotation group. To 
form the connection we constructed simplified models of two, 
three and four states, all (electronically) degenerate at a 
single point, and we employed the relevant non-adiabatic 
coupling matrices. We found that once these matrices are 
properly quantized (Baer, M. Chem. Phys. 259,123,2000) the 
adiabatic-to-diabatic transformation matrices and Wigner's 
d j-rotation matrices are related via a similarity 
transformation. 

I. Introduction 
During the last few years major efforts were made to understand the 

features of the non-adiabatic coupling terms (NACTs) and their role in the 
theory of molecular physics (7-9). The NACTs owe their existence to the Born-
Oppenheimer (BO) assumption which says that the fast moving electrons can be 
treated separately from the (assumed) slowly moving nuclei (10,11). The B O 
treatment seems to be somewhat artificial and somewhat too mathematical but 
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nevertheless it justified itself in endless experiments in spectroscopy and 
scattering processes. Accepting the BO separation leads to an unavoidable 
encounter with these unique unresolved mathematical functions. The NACTs 
are characterized by two features: They are vectors (in contrast to potentials 
that are scalars) and they can become singular (in contrast to potentials which 
cannot). If arranged in matrices they acquire a third interesting feature, namely, 
the matrices are antisymmetric. 

It could be that the NACTs, compared to potential energy surfaces, are less 
physical and more mathematical objects. This belief can, eventually, be 
justified if the unique feature of the NACTs namely their being singular were 
only rarely encountered in ab-initio treatments. In fact what happens is that 
singular NACTs are found all over configuration space (CS) (9,72), in large 
quantities, much more than ever anticipated. The fact that they are so numerous 
and are expected to play a dominant role in any study related to excited states 
calls for a better knowledge of these entities and a deeper understanding of their 
abilities. 

The ordinary way to get acquainted with objects like the NACTs is to 
derive them from first principles, via ab-initio calculations (13-16), and probe 
their spatial structure - somewhat reminiscent of the way potential energy 
surfaces (PES) are studied. However, in contrast to PESs, this way is, by far, 
not enough. The fact that the NACTs are so frequently singular in addition to 
being vectors calls for more mathematics oriented approaches in order to 
understand their role in molecular physics. A very important methodology in 
this respect is to assume ad-hoc models and to look for the features these 
NACTs have to fulfill in order to be, indeed, appropriate for molecular systems 
(17-23). During the last decade we followed both courses but our main interest 
was pointing towards the physical-mathematical features of the NACTs 
(17,18,20,24-26). In this process we revealed the necessity of being able to 
form sub-Hilbert spaces (SHS) in the given region of interest in CS and the fact 
that the non-adiabatic coupling matrix (NACM) has to be quantized for this 
SHS if they are supposed to have physical significance (20,25). This 
quantization requirement enhanced the recognition that the N A C M s are closely 
related, much more than anticipated, to the angular momentum operators. In the 
present article this approach is pursued. In particular we show, for special 
cases, that the adiabatic-to-diabatic transformation (ADT) matrix is closely 
related to Wigner's d j rotation matrices that form the irreducible representation 
of the rotation group (27,28). 

The model we consider for this purpose is a case of Ν surfaces all 
degenerate at one single point in CS where the N A C M t(s) is of the following 
form (20): 

X(s) = gt(s) (1) 
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Here g is a N x N anti-symmetric constant matrix, t(s) is a vector and s is a point 
in CS. In what follows we consider integrals along contours. In particular we 
shall be interested in the integral: 

Y(S) = JdB ' . t iO (2) 
0 

carried out along Γ where both points, i.e. s=0 and s itself are on Γ. Here ds is 
the vectorial differential length along the contour and the dot stands for a scalar 
product. Next we introduce the angle α defined as the value of the above 
integral for a closed contour Γ. Thus: 

CC = jTds-t(s) (3) 

In what follows we shall be interested only in contours that surround the 
above mentioned point of degeneracy. Next it is assumed that for each chosen 
contour the elements of the g-matrix are arranged in such a way that the vector 
t(s) is guaranteed to be normalized as follows: 

α ( Γ ) = 2 π (4) 

This implies that for each such a contour the g-matrix may have a different set 
of constant elements (although the elements of the t(s)-matrix will be 
unchanged). 

In the present article we derive conditions to be fulfilled by the g-matrix 
elements in order for the x(s)-matrix to be a matrix of physical meaning. This 
we do in three steps: (a) first for the general case, next (b) for the T(s)-matrix 
defined in Eq. (1), and finally (c) for the three special cases, namely: the two-
degenerate case (N=2), the tri-degenerate case (N=3) and the tetra-degenerate 
case (N=4). Whereas the first two cases were already worked out by us on 
various occasions (17,18,20), the third case is not only new but also presents 
new interesting features different from the ones obtained in these first two 
studies. 

II. Theoretical Background 

In their treatment of the mixed systems of nuclei and electrons Born and 
Oppenheimer derived the Schroedinger equation (SE) for the nuclei which in 
present day notation can be written as (20,25,29): 

1 2 
( V + τ ) Ψ + ( α - £ ) ψ = 0 

2m K ) 
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where V is the usual (mass-scaled) gradient operator, Ε is the total energy, Ψ is 
a column matrix which contains the nuclear functions {ψί; i=l,2...}, u is a 
diagonal matrix which contains the adiabatic potentials and τ is a matrix which 
contains the above mentioned NACTs: 

This derivation holds for a complete Hilbert space but it can be shown to hold 
also for a SHS of finite dimension M (20,25) if and only if certain conditions 
are fulfilled (26). 

From Eq. (5) it is noticed that τ, like the grad operator itself, is a 
momentum operator. With respect to that, a relevant question is: What happens 
if one integrates over τ along a closed contour Γ? In other words, is there any 
demand to be associated with the following differential dA: 

The answer to this question is, as was found out recently (17,18,20,25), 
connected with the diabatic representation. Diabatic potentials can be formed in 
various ways but the more straightforward way is by employing a set of 
electronic eigenstates as calculated at one single point in configuration space 
(CS) (in this sense it can be said that diabatic potentials are a result of the B O 
treatment). From the way these potentials are calculated it can be seen that the 
diabatic potentials, just like adiabatic potentials, are single-valued in CS. 
Having single-valued potentials is an essential requirement because it is not 
possible to solve the relevant (nuclei) SE unless the potentials are single-
valued. 

The main drawback of forming the diabatic framework directly from the 
B O eigenfunctions (29,30), is that it does not yield the size of the minimal SHS 
required in order to obtain converged results for the nuclear (physical) 
observables. The only way to obtain the size of this reduced SHS is to calculate 
the NACTs and then to employ the line integral approach (to be discussed later) 
for this purpose (24,29,31). 

In what follows we shall briefly describe another way of deriving the 
diabatic framework but which also yields this above mentioned missing 
information. It is based on eliminating the T-matrix from Eq. (5). This is 
achieved by employing the adiabatic-to-diabatic transformation (ADT) matrix 
A, which is derived as a solution of the following first order differential 
equation (24): 

(6) 

<2A = τ ? (7) 

V A + τΑ = 0 (8) 
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Once A is calculated, the diabatic potential matrix W follows from the 
expression: 

W = A t u A (9) 

where A*is the complex conjugate matrix of A . It is important to emphasize 
that to derive the diabatic potentials this way is as valid as deriving them 
employing the 'direct' way. This does not mean that the two diabatic matrices 
are necessarily identical, but it means that they have to be related by a 
(constant) unitary transformation. 

Before considering W we shall briefly discuss the conditions for Eq. (8) to 
have a solution. Being a first order differential equation, Eq. (8) is solved along 
a contour. The condition for the existence of a solution along this contour is 
fulfillment of the 'Curl' condition (20,24). Thus if ρ and q are any two 
(Cartesian) coordinates then the 'Curl' condition implies: 

This equation can also be written more compactly as: 

Curk ={txr] (11) 

Let us now return to Eqs. (8) and (9). If this procedure is mathematically 
valid the diabatic potentials produced in this way have to have the same 
features as those obtained by any other valid procedure. So if a valid procedure 
leads to single-valued diabatic potentials the same has to apply for the present 
procedure as expressed by Eqs. (8) and (9). It is noticed that since the adiabatic 
potentials are single-valued by definition, the single-valuedness of W depends 
on the features of the Α-matrix (see Eq. (9)). It is also obvious that if A is 
single-valued, the same applies to W (the sufficient condition for having a 
single-valued Α-matrix is the fulfillment of the 'Curl ' condition in the region of 
interest (20,24). However it turns out that A does not have to be single-valued 
in order to guarantee the single-valuedness of W. In fact it was proved (20) that 
the necessary condition for having single-valued diabatic potentials, along a 
given contour Γ, is that the τ-matrix fulfill a certain 'quantization' condition. 
This condition will be discussed next. 

Assuming the 'Curl' condition is fulfilled along Γ then Eq. (8) has a 
solution, which can be presented in the following way (31,32): 

( s ^ 
(12) 
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where s and s 0 are two points on Γ and the symbol ψ is introduced to indicate 
that this integral has to be carried out in a given order. In other words, p is a 
path-ordering operator. In presenting A(s,s0) in this way it is assumed that the 
boundary condition for the solution is the unit matrix. 

Next we introduce a matrix D (=A(so,s0)), hence termed the topological 
matrix, defined as (17,18,20,25): 

O = pexp(-$Tds-x) (13) 

It can be proved (20) that the necessary condition for having single-valued 
diabatic potentials is that the D-matrix fulfill the following commutation 
relation: 

[D,u(s)] = 0 (14) 

at every point in the region of interest. Since u(s) is a diagonal matrix this 
condition can be satisfied if and only if the D-matrix is diagonal with numbers 
of norm 1, namely, numbers that are either (+l)s or (-l)s. In this sense Eq. (13) 
is a quantization condition. Thus it is indeed a quantization related to the 
(differential) expression in Eq. (7) but in a more complicated way. In particular 
the quantized expression is solely dependent on the τ-matrix and is related to a 

contour constructed by <j>r ds. The quantization refers to a certain closed 
contour but in fact, in order for W to be single-valued in a given region, Eq. 
(13) has to be fulfilled along any contour in this region (excluding singular 
points). It is important to emphasize that different (closed) contours may lead to 
different quantization conditions, namely, to different sets of (-l)s distributed 
along the diagonal and/or even to a different number of (-l)s. However it has to 
be emphasized that the possibly formed diabatic potentials will be the same, 
independent of the contours that were traced. 

III. The Treatment of the Model NACM 

For the model N A C M as presented in Eq. (1) the D-matrix in Eq. (13) can 
be written as: 

D = exp(-ga) (15) 

where α is defined in Eq. (3), or due to the normalization condition imposed on 
t(s) it can also be presented as: 

D = exp (-2g7l) (15') 
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Since is g a full matrix we still have to evaluate the exponential function. If G 
is the matrix that diagonalizes g and if Xk; k=l,...,N are the corresponding 
eigenvalues then the D-matrix can be presented as: 

D = G Ε(α) Gt = G Ε (2π)) Gt (16) 

where the matrix Ε is a diagonal matrix with the elements: 

Ejk = Ôjk exp (-XjOt) = Ôjk exp (-2nkj) (17) 

It might be important to remind the reader that the A D T matrix defined in Eq. 
(12) can be written in a similar form like Eqs (15) namely: 

A = exp [-gy(s)] (18) 

or also 

A=GE(7(s))Gt (18') 

where the Ε-matrix, is similar to the one defined in Eq. (17) except that γ 
replaces a: 

Ejk = ôjk exp (-Aj7(s)) (19) 

IV. The Treatment of Special Cases 
For reasons of convenience and also in order to show the similarities 

between our various A D T matrices and the Wigner's dJ-matrices we assume 
the g-matrix to have non-zero elements along the two tri-diagonals only (this, 
comment is not relevant for the two-surface case). Thus we assume for g the 
following structure: 

gjk = Sjk-i gj and gjk = -8jk+l gj (20) 

We shall refer to three special cases, namely, the two-state degeneracy, the 
tri-state degeneracy and the tetra-state degeneracy. The first two cases were 
already discussed before and will be mentioned here just for the sake of 
completeness, but we shall elaborate on the tetra-surface case (N=4) which is 
presented here for the first time. 
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IV.l The Two-State Degeneracy 
The g-matrix in this case is given in the form: 

g = (21a) 

The matrix G that diagonalizes g is: 

G = Si 
f 1 1 

i -i 
(21b) 

and the corresponding eigenvalues are λ ι ι 2 = ±igi- Substituting Eq. (21b) in Eq. 
(16) where in Eq. (17) the two X's are replaced by ± gi yields the following D-
matrix: 

D = 
ĉos(27rgj) -sin(2^gj)^ 
ŝin(2tfgj) cos(27rgj) J 

Since D has to be a diagonal matrix the allowed values for gi are: 

gi = n/2 

(22) 

(23) 

where η is an integer. In case η is an odd integer we encounter the Jahn-Teller 
(33-35) model and in case it is an even integer we have the Renner-Teller 
model (36,37). 

From Eqs. (18), (19) and (23) we get for the A D T matrix: 

A = 
rcos(7/2) -sin(y/2)^ 
^ sin(y / 2) cos(7 / 2) 

(24) 

where γ is given in Eq. (3) and is defined in the [0,2π] interval. 
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IV.2 The Tri-Fold Degeneracy Case 
The g-matrix is given in the form: 

( ο 0 

g = 0 #2 
0 

"*2 
0 

(25) 

For this matrix we get the following eigenvalues: 

2 = ±ÏÛ) , A 3 = 0 ; where ω 

and the corresponding matrix, G , that diagonalizes it: 

12 2 
= V ^ l + *2 

G = 
ω Τι ίω -ίω 0 

y - g 2 - g 2 g{Ji 

(26a) 

(26b) 

Substituting Eq. (26b) in Eq. (16) where in Eq. (17) the three X's are replaced 
by Eq. (26a) yields the following D-matrix: 

D = ω -2 
gxœS (02C -g2G)S 

gi82(l-C) g2coS gl

2+g2

2C 

(27) 

where: 

C = COS(2KO>) and S = sin(2KCD) (28) 

Since the D-matrix has to be diagonal this requirement can be fulfilled if and 
only if (17,18) 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

8

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



370 

Cù=n (29) 

where η is an integer (see also Eq. (26a)). Substituting Eqs. (28) and (29) in Eq. 
(27) shows that the diagonal of the D-matrix contains only (+l)s, which implies 
that the D-matrix is, in fact, a unit matrix. 

From Eqs. (18), (19) and (29) we get for the A D T matrix (assuming n=l): 

A(r) = g^(r) c(r) -g2s(r) (30) 

where we recall that: 

2 2 1 

«I + 82 = 1 (31) 

and 

C(y) = cos(y) and S(y) = sin(Y) (32) 

Here γ is given in Eq. (3), where we recall that it is defined along the [0 52π] 
interval. 

IV.3 The Tetra-fold Degeneracy Case 
The g-matrix for this case is: 

g = 

0 Si 0 0 
Si 0 s2 

0 
0 #3 

0 0 -83 0 

(33) 

For this matrix we get the corresponding eigenvalues: 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

8

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



371 

Aj2 = ±ip 

\ 4 = ±iq 
where ρ and q are: 

Ρ 

and 

1 / / 2 \ ( 1 / 2 ) 

= -^yo2+yjœ4-4(glg3) j 

j , . 1 \ ( 1 / 2 ) 

- ^ ^ 2 - > / û ) 4 - 4 ( g 1 g 3 ) j 

ω = + sl + si) 

(33a) 

(35) 

(36) 

It is seen that both ρ and q are real functions and that p>q. 
The corresponding matrix, G, that diagonalizes the matrix τ is: 

G = 

( V V -λρσ -λ σ Λ 
"ρ 

1 -ipXq "1λρ 

λρσ λρσ ν 
CiqXp iqXp 

where σ stands for gi and λρ and Xq are defined as: 

λρ -
2 2 

\P -σ 
2 2 ' 

p -q 

2 2 
σ - 0 

2 2 

(34b) 

(37) 

Substituting Eq. (34b) in Eq. (16) where, in Eq. (17), the four X's are replaced 
by Eqs. (34a), yields the following D-matrix: 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
01

8

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



372 

D u = X q

2 C p +Xp 2 C q ; D 1 2 = (pXq

2Sp+qXp2Sq)Aj 

Di3 = - A p X q ( C p - C q ) ; D 1 4 = ^ q ( - q S p + p S q ) / a 

D 2 2 = (PVC P+qVCq)^i D 2 3 = λρ Xq (pS p-qS q)/o 
D 2 4 = pqAp λ^ρ-Ο ,νσ 2 ; D 3 3 = (X2Cp+Xq

2Cq 

D 3 4 = -(ςλρ 2 8ρ+ρλ ς

2 8 ς ) /σ; D ^ = (q\2C^p\2Cq)/(^ 

D 2 i = - D i 2 ; D 3 i = D i 3 ; D 3 2 = - D 2 3 ; 

D 4 i = -D14; D 4 2 = D 2 4 ; D 4 3 = - D 3 4 

(38) 

where: 

C p = cos (2πρ); 

C q = cos (2nq); 
Sp = sin (2πρ) 

Sq = sin (2nq) (39b) 

(39a) 

The conditions for the D-matrix to become diagonal is that ρ and q fulfill 
the following conditions: 

where η (>1) and I defined in the range n>^>0, are allowed to be either 
integers or half integers but m=n-€ can only attain integer values. The 
difference between the case where η and I are integers and the case where both 
are half integers is as follows: Going through the expressions in Eq. (38) it is 
noticed that in the first case all diagonal elements of D are (+1) (so that D is, in 
fact, the unit matrix) and in the second case we get that all four diagonal 
elements are (-1) (so that D is, in fact, the minus 4x4 unit matrix). 

Since ρ and q are directly related to the gj, j=1,2,3 (see Eqs. (35) and (36)) 
the two conditions in Eqs. (40) imply 'quantization' conditions for the values of 
the g-matrix elements. 

It is interesting to note that this is the first time that in the present 
framework the quantization is formed by two quantum numbers: a quantum 
number η to be termed the principal quantum number and a quantum number 
£, to be termed the secondary quantum number. This case is reminiscent of the 
two quantum numbers that characterize the hydrogen atom or the three 
dimensional harmonic oscillator. 

To obtain the A D T we again employ Eqs. (38), where ρ and q are replaced 
by η and ί respectively and C p , S p, C q and S q in Eqs. (40) are replaced by: 

p = n (40a) 

and 

(40b) 
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Cp = cos (γρ); Sp = sin (γρ) (4 la) 

Cq = cos (yq); Sq = sin (yq) (41b) 

respectively. Here, as in the previous cases, γ is defined in Eq. (2) and attain 
values in the interval [0,2π]. 

V. The Adiabatic-to-Diabatic Transformation 
Matrix and the Wigner Rotation Matrix 

The explicit elements of the Wigner's three dimensional rotation matrix 
D J(B) are written as (28): 

<>m^ = {M 1 *(*. θ)I jm) = e~i{m'a+mY) (jm >\ | jm) (42) 

where R(k,6) is the ordinary angular momentum operator in the limit Θ—»0, m 
and m' are the components of the total angular momentum operator J along the 
ζ and the z' axes, respectively, α, β and γ are the corresponding three Euler 
angles and I jm) is an eigenfunction of the Hamiltonian, of J 2 and of J z . As a 
result Eq. (42) will be written as: 

D\ (e) = e-iim'a+nrr)di, (β) (43) 

It is noticed that i f we are interested in finding a relation between the A D T 
matrix and Wigner's rotation matrices we should concentrate on the dJ-matrix. 
However before going into a detailed comparison between the two types of 
matrices it could be of interest to consider the elements of the Jy-matrix, which 
is responsible for the formation of the d j -matrix. Employing Eqs (2.18) and 
(2.28) of Ref. 28 it can be shown that: 

{jm I J y I Jm + *) = Ô\k — yj(j + m + l ) 0 ' - m ) (44a) 

(jm + kIJ I jm) = -6lk — ^ ( j - m + l X j + m) (44b) 
2i 
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Now defining j y -as: 

Jy - ijy (45) 

it is seen that the J y -matrix is an antisymmetric matrix just like the g - N A C M 

(compare Eq. (20) with Eqs. (44) and (45)). Moreover since the d 1 -matrix can 
be defined as: 

ά ί ( β ) = 6 χ ρ ( - ί β Ι Υ ) = β χ ρ ( β ^ ) (46) 

it is expected that the dJ-matrices belong to the same group as the A D T 
matrices if the angle β is identified with the phase γ (see Eq. (18)). Next we 
inspect the three above studied cases: 

(1) For the two-state case (i.e. j=l/2), the J y -matrix is of the form: 

i t 1 °) (47) 

thus the value of the corresponding g! in Eq. (21a) is (1/2) which is its value if 
in Eq. (23) we assume n=l (i.e., the Jahn-Teller case). 

(2) For the tri-state case (i.e., j=l), the J y -matrix is of the form: 

J y = 

0 41 0 

Î2 0 4~1 
0 -41 0 

(48) 

Comparing Eqs. (48) and (25) it is noticed that the J y -matrix and the g-matrix 

become identical when 

8 \ =82 = ^ / 2 = > ω = 1 (49) 

From Eq. (28) it is noticed that the integer η has to be equal to 1. For this case it 
is easy to see that Α(γ) in Eq. (29) becomes identical to d1(y), given in Ref. 28. 
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(3) For the tetra-state case (i.e. j=3/2), the J y -matrix is of the form: 

( 0 s 0 0 

-S 0 2 0 

0 - 2 0 VI 
0 0 -S 0 

(50) 

Comparing Eqs. (50) and (33) it is noticed that the J y -matrix and the g-matrix 

become identical when 

gx = g3 = S12 ; g2 = 1 (51) 

Employing Eqs. (35) and (36) it can be seen that for this choice the two 
numbers ρ and q become: 

ρ = η = 3/2 and q = I = 1/2 (52) 

These possibilities were discussed in the paragraph that follows Eqs. (40). 
Since Wigner's rotation matrix for this case Le., d 3 / 2(y), is usually not given in 
the text books, it is presented here for the sake of completeness: 

«i"(r) = 

' c 3 

- V 3 5 

-s: -V3S 2 C 

-y[3S2C s3 

-S(1-3C 2) 

C(l-35 2) -V3C 25 

\Î3C2S c 3 

(53) 

where C=cos(y/2) and S=sin(y/2). 
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VI. Discussion and Summary 

In this publication we considered multi-fold degeneracy with the aim of 
revealing the connection between the A D T matrices and the irreducible 
representation of the rotation group. To form the connection we constructed 
simplified models of two, three and four states, all degenerate at a single point 
and employed a general but relevant N A C M s . This type of models (except the 
two-state model) may not exist in real chemical systems and if they do they are 
far from being common. Nevertheless we think that such a study, which also 
leads to some interesting results, can expose realistic situations which may exist 
but could not be predicted otherwise. 

We know already that the N A C M s have to be quantized not only because 
the electronic ab-initio programs produce them as such (when calculated for the 
relevant SHS) (1-10,38) but in order to guarantee that the relevant diabatic 
potentials are singlevalued. In other words this kind of N A C M is the only one 
that will lead to A D T matrices which guarantee physically correct diabatic 

potentials. We showed that the J y -matrix ( J y - = i J y where J y is the y-

component of the total angular momentum), which is responsible for the 
formation of the irreducible group of the rotation matrices, is an antisymmetric 
matrix just like the N A C M . In fact we showed more than that. We found (at 
least for the 2x2, the 3x3 and the 4x4 matrices) that all relevant N A C M s have 

eigenvalues that turn out to be identical to those of the relevant J y -matrices. 

Thus, in both cases the eigenvalues of the 2x2 matrices are (1/2,-1/2), those of 
the 3x3 matrices are (1,0,-1) and those of the 4x4 matrices are (3/2,1/2, -1/2 -
3/2). Assuming that this situation applies for any dimension NxN, this means 

that all quantized g-matrices of the type presented in Eq. (1) and all the J y -

matrices are similar, namely, related via an orthogonal transformation. It is 
straightforward to show that, because of this fact, the same relation holds 
between the A D T matricx (generated by the NACMs) and Wigner's dWotation 
matricx namely, they too are related via a similarity transformation. 
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Chapter 19 

Spectroscopic Determination of Potential 
Energy Surfaces for the Out-of-Plane Ring Vibrations 

of Indan and Related Molecules in Their 
S0 and S1 (Π, Π*) States 

J. Laane1, Z. Arp1, S. Sakurai1, K. Morris1, N. Meinander1, T. Klots2, 
E. Bondoc1, K. Haller1, and J. Choo1 

1Department of Chemistry, Texas A&M University, College Station, TX 77843 
2SC Johnson Polymer, 8310 16th Street, Sturtevant, WI 53177 

The laser induced fluorescence excitation spectra of jet-cooled 
indan and related moelcules along with their ultraviolet 
absorption spectra have been used to study their S1(π,π*) excited 
states. Far-infrared, Raman, and dispersed fluorescence were 
utilized to obtain the vibrational data for the S ground states. 
This allowed the potential energy surfaces (PESs) of these 
molecules to be determined in terms of the ring-puckering and 
ring-flapping coordinates for both states. These PESs provide 
barriers to planarity and conformational structures for these 
bicyclic molecules. Phthalan has a barrier of 35 cm-1 in S 0 but no 
barrier for S1. Coumaran has an S 0 barrier of 279 cm-1, while 
1,3-benzodioxole has barriers of 171 and 264 cm-1 for S 0 and S1, 
respectively, due to the anomeric effect. The barriers for indan 
are 1077 cm-1 for S 0 and 698 cm-1 for S 0. Ab initio calculations 
in general provide good barrier values for the ground state. 

380 © 2002 American Chemical Society 
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Introduction 

Conformational changes in molecules often proceed along vibrational 
pathways. In selected cases these pathways can be represented by one- or two-
dimensional vibrational potential energy surfaces (PESs). In our laboratory we 
have for many years investigated the PESs of cyclic and bicyclic molecules in their 
electronic ground states using far-infrared and Raman spectroscopy.1"5 In recent 
years we have also used fluorescence spectra of jet-cooled molecules and ultra
violet absorption spectra to determine the PESs in electronic excited states.3"5 In 
the present paper we present our results for the ground (S0) and excited [ β ^ π , π * ) ] 
electronic states of several molecules in the indan family which are shown in 
Scheme I. 

@> m <OO ©ο 
PHT B Z D C O U IND 

Scheme I. 

Each of these molecules possesses three low-frequency out-of-plane vibrations 
involving the five-membered ring and these are shown in Figure 1 for indan. 

Each of these vibrations has a vibrational frequency below 300 cm' 1. As 
we shall see, these molecules are often puckered so that the ring-puckering 
vibration υ Ρ can be used to represent the conformational changes when the 
molecule converts from one puckered structure to the other. During the process 
the molecule passes through the higher energy planar configuration. These 
molecules may also have energy minima corresponding to a small amount of 
flapping, but this is generally much less than the puckering. However, since both 
υ Ρ and D F are of large-amplitude, have low frequencies, and have the same 
symmetry, these vibrations interact very strongly and a two-dimensional analysis 
is desirable for analyzing the conformational processes. Since the ring twisting 
is of a different symmetry species ( A 2 ) , interactions with these motion can typically 
be neglected. 

We employ several spectroscopic methods to determine the vibrational 
quantum states for both the electronic ground and excited states. The transitions 
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involved are shown in Figure 2 for the ring-puckering states of phthalan (PHT). 
Far-infrared absorption spectra can be used to study the single ( Δ ν Ρ =1) and triple 
(and sometimes double) quantum jumps of the ring-puckering vibrations in S 0 

along with transitions involving the ring-flapping quantum states of the right 
symmetry (A{ or B 2 for indan). In the vapor-phase Raman spectra, recorded for 
samples which have been heated to increase their vapor pressure, the totally 
symmetric transitions are almost always the only ones observed and these involve 
Δ ν Ρ = 2. Laser induced fluorescence (LIF) of molecules cooled in a supersonic jet 
provides an excellent method for determining the vibronic levels in the Si 
electronic excited state. By tuning the laser through the ultraviolet region, 
fluorescence excitation spectra (FES) are produced whenever the laser frequency 
matches the energy difference between the ground state and a vibronic level. The 
selection rule for these transitions is typically Δ ν Ρ = 0,2,4... The LIF can also be 
used to produce single vibrational level fluorescence (SVLF) by examining the 
frequencies of the emitted fluorescence. These transitions from a specific vibronic 
level terminate on S 0 vibrational levels and generally also require that Δ ν Ρ = 
0,2,4.... The S V L F data is helpful in confirming the ground state (S0) 
assignments. Ultraviolet absorption data are also invaluable in complementing the 
LIF data. These are recorded at room temperature and follow the same selection 
rules as LIF but many more transition frequencies can be observed since many of 
the S 0 vibrational quantum states are significantly populated. Without the LIF 
spectra, the ultraviolet absorption spectra are too complex to be interpreted 
correctly. Together with the simpler LIF spectra, however, the ultraviolet data can 
be used to determine many additional vibronic levels in the Si excited state. The 
experimental methods for collecting spectra have been described elsewhere. 1 5 1 2 1 4 

Theory 

Figure 3 shows the definition of the puckering (x) and flapping (τ) vibrational 
coordinates for the indan family of molecules. Atoms 1 to 5 are part of the five-
membered ring, atoms 4 and 5 are common to both rings, and the benzene ring on 
the left is assumed to be rigid. The angle bisector model,1"5 where C H 2 and C C C 
angles have common bisectors, has been assumed. The methods for computing the 
coordinate dependent reduced masses and cross terms for these motions have been 
described.6*11 For the two-dimensional computation, the Hamiltonian in terms of 
χ and τ is 

H(x,x) = -%2I2 [d/dx(g44(x,x))d/dx+ d/dx(g55(x,x))d/dx 
+ d/dx(g,5(x,x))d/dx d/dx(gA5(x,x))d/dx] + V(x,T) (1) 
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where g44 and g 5 5 are the kinetic energy expressions (reciprocal reduced masses) 
for the ring-puckering and ring-flapping, respectively. The g 4 5 expression is the 
kinetic interaction term. The kinetic energy expressions are coordinate dependent 
since the reduced mass changes with the amount of puckering and flapping. 
Figure 4 shows g 4 5 as a function of both χ and τ , for 1,3-benzodioxole and the 
coordinate dependence can be seen to be substantial. The potential energy 
generally has the form 

V(x,T) = axxA + bxx2 + a2XA +b2X2 + cxh2 (2) 
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Results and Discussion 

The far-infrared spectrum of coumaran (COU) 5

1 5 which is shown in 
Figure 5, very nicely demonstrates how the spectroscopic data is utilized to 
determine the quantum states for the puckering and flapping vibrations. In the 
figure the puckering transitions are labeled. Most of these are for the flapping 
vibrational ground state (vF = 0), but those with primes are for the transitions with 
v F = 1. In the flapping excited state, the puckering frequencies are shifted 
considerably (127.8 - 133.4, 3.2 -2.7, 37.0 -32.5 c m 1 , etc.). This reflects a 
moderately large interaction between υ Ρ and i) F. Nonetheless, a one-dimensional 
potential energy function [ignoring the kinetic and potential energy interactions 
in Eqs. (1) and (2)] of the form 

V(cm 4 ) = 7.92 χ 105x4 - 2.99 * 104x2 (3) 

ο 

where χ is in A, nicely reproduces the observed spectral frequencies. Figure 6 
shows this function along with the observed transitions. The barrier to planarity 

Figure 5. Far-infrared spectrum of coumaran. 
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-0.3 iui θ̂Γϊ O O ÔLÏ 0 2 0.3 

Χ (A) 
Figure 6. One-dimensional potential energy function for the ring-puckering of 
coumaran. 

is 279 c m 1 (0.80 kcal/mole) and the energy minima correspond to χ = ± 0.14 Â 
or dihedral angles of ± 30°. The more complex two-dimensional analysis accounts 
for the puckering/flapping interaction but results in essentially the same barrier 
and dihedral angles.15 Studies of coumaran in its β ^ π , π * ) are underway but have 
been complicated by apparent dimer formation. 

The far-infrared spectrum of phthalan (PHT) 1 6 is quite irregular and can 
not be fitted well using a one-dimensional potential energy function. It has three 
low-frequency bands between 30 and 35 cm"1, a large group of bands between 65 
and 80 cm"1, and another large group of bands between 90 and 110 cm' 1. Many 
hot bands involving the ring-flapping excited states v F = 1 and 2 states are also 
present between 210 and 235 cm 1 . While the puckering levels change only 
somewhat in the v F = 1 and 2 states, the irregularpattern (74.3,98.5,93.2,100.6) 
can not at all be accounted for without the utilization of the two-dimensional 
model [Eqs. (1) and (2)] that includes a large kinetic energy interaction through 
the g 4 5 term. However, use of this two-dimensional PES results in an excellent fit 
to the experimental data and shows that a tiny barrier to planarity of 35 cm"1 is 
present.17 This is less than the zero-point energy. The ε^π ,π*) excited state of 
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phthalan was also studied using FES and ultraviolet absorption spectroscopy. 
Figure 7 shows the π and π * orbitals of phthalan correlated to those of benzene. 
The Si state arises from the B 2 - B{ electronic transition at 37,034.2 cm"1. The S! 
energies of the vibronic levels (Figure 2 shows some of the levels) were used to 
obtain the PES for the excited state, and this has the form 

V (cm 1) = 7.96 χ 10 5x 4+ 4.09 χ 1 0 3 τ 2 + 1.44 χ 10 5 χ 2 τ 2 . (4) 

This surface, unlike the ground state, has no barrier to planarity and is suffer 
along the puckering coordinate. This is shown in Figure 8 where the one-
dimensional slices of the two-dimensional surfaces for the S 0 and Si states are 
compared (τ has been set to zero). The puckering energy levels for the Sx state for 

Figure 7. Molecular orbitals for phthalan and the electro 
the Sj(π, π*) state. The correlation to benzene orbitals is shown. 
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•0.2 -0.1 0.0 0.1 0.2 

Χ (A) 
Figure 8. Potential energy along the ring-puckering coordinate fo the ground (SQ) 
and excited states Sj(7tt 7t*)] of phthalan. 

v F = 0 are also shown. The PES along the flapping coordinate has the expected 
decrease in stiffness reflecting the decreased π bonding of the benzene ring. The 
results for both the ground and excited electronic states demonstrate that he kinetic 
energy interaction plays a major role in determining the nature of the puckering 
levels. The potential energy interaction term is not significant for the S 0 state but 
increases in magnitude for β^π ,π* ) . 

O f this group of molecules, the investigation of 1,3-benzodioxole (BZD) 
proved to be the most interesting due to the presence of the anomeric effect 
resulting from the - 0 - C H 2 - 0 - configuration. Previously we have studied 1,3-
dioxole, 1 8 OCH 2 OCH=CH 2 , and showed that his molecule was puckered with a 
barrier to planarity of 325 cm"1 arising from the anomeric effect. The far-infrared 
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spectrum of B Z D 1 9 is very rich and was analyzed with a two-dimensional PES 
which has a barrier to planarity of 164 cm"1. Its FES and uv absorption spectra20 

are shown in Figure 9 while the vibrational quantum states for the puckering are 
presented in Figure 10. A l l the data can be fit very well with separate PESs for the 
two states. The S 0 surface, with a barrier to planarity of 164 cm"1, and minima at 
puckering and flapping angles of ± 24° and =F 3°, respectively, is shown in Figure 
11. The non-planarity clearly arises from the anomeric effect which is generally 
attributed to orbital interactions between η and σ* orbitals. Figure 12 shows that 
this interaction for B Z D is most effective when the the five-membered ring is 
puckered. The B Z D barrier of 164 cm"1, however, is less than expected based on 
the 1,3-dioxole results (325 cm"1 barrier). This suggests that the benzene ring π 
orbitals are competing to interact with the non-bonded orbitals on the oxygen 
atoms, thereby decreasing the anomeric effect. If this is the case, then the 
disruption of the π bonding on the benzene ring by a π - π * transition should 
decrease the suppression of the anomeric effect and the barrier in the S ^ T l * ) 
state should increase. This is indeed the case as the barrier in the excited state is 

500 400 300 200 100 0 
cm 1 

Figure 9. Fluorescence excitation spectra (jet-cooled) and ultraviolet absorption 
spectra of 1,3-benzodioxole. 
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Figure 10. Ring-puckering quantum states of 1,3-benzodioxole in different 
flapping and electronic states. 
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nearly doubled to 264 cm"1. This value is much more in line with the 1,3-dioxole 
result where there is not competition from benzene ring orbital interactions with 
the oxygen non-bonded orbitals. Thus, the π - π * transition clearly decreases the 
suppression of the anomeric effect. 

The parent molecule in this group of molecules is indan. Its far-infrared 
spectrum shows a group of closely spaced bands originating at 143 cm"1 arising 
from the ring-puckering while bands near 250 cm"1 are due to the ring-flapping. 
The ring-twisting can be seen in the vapor-phase Raman spectrum at 178 cm"1. 
Without additional information, however, the assignment of the levels is not 
unambiguous. Figure 13 shows the FES and ultraviolet absorption spectra of 
indan. The ring-puckering, twisting, and flapping bands can be observed at 116, 
137, and 176 cm"1 for the S^^Ti*) state, all at lower values reflecting the reduced 
rigidity of the molecule. Figure 14 shows the dispersed (SVLF) spectra resulting 
from excitation of the 00° band. This along with the dispersed spectra from the 
other vibronic quantum states in Sx not only provide energy level data for the S 0 

ground state, but also help with the assignment of the excited state. Vibronic 
levels associated with puckering levels in S{ tend to give rise to fluorescence 
transitions to puckering levels in S 0, twisting vibronic states fluoresce to twisting 
S 0 levels, and flapping vibronic states to flapping S 0 levels. This type of analysis 
then is invaluable for making both the S 0 and β ^ π , π * ) energy level assignments. 
Figure 15 presents the one-dimensional potential energy fonctions for the ring-
puckering for both electronic states based on the experimental data. The barrier 
for the ground state is 1077 cm*1; this drops to 698 cm"1 for the excited state. For 
indan, as for coumaran, the barrier arises from - C H 2 - C H 2 - torsional interactions 
which tend to bend the five-membered ring into a non-planar conformation. Since 
there are three of these interactions as opposed to two for coumaran, the barrier is 
considerably higher in the ground state. 

Ab initio calculations were also carried out to compare predicted barrier 
heights with experimental values. The results are summarized in Table 1. The 
agreement for the ground state is remarkably good except for indan where the 
computed barrier is too low. For excited state calculations the computational 
methodology is not as well established and the calculated values are less 
satisfactory. 

Conclusions 

The spectroscopic methods described here provide a powerful way for 
accurately determining PESs for both ground and excited electronic states. The 
work on the indan family of molecules provided a number of unusual results. 
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36904 36404 35904 

-1000 
cm 

Figure 13. Fluorescence excitation and ultraviolet absorption spectra of indan. 

ο UV absorption 

Ί 
37400 

It u 
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37200 37000 
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36800 

Figure 14. Dispersed fluorescence (SVLF) spectra ofjet-cooled indan. 
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Figure 15. One-dimensional potential energy functions for the ring-puckering of 
indan in its ground and excited electronic states. 

Table L Comparison of Experimental and Ab Initio Barriers 
(cm1) for Molecules in the Indan Family 

Ground State ε^π ,π*) Excited State 

Molecule Exp. Ab Initio^ Exp. Ab Initio 

PHT 35 91 0 0 

B Z D 164 171 264 369 

C O U 279 258 — - — 

IND 488 662 441 841 
Ground: MP2/6-31G* basis set 
Excited: CIS/6-31 l+G(2s.p)//CIS/6-31+G* basis set 
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Phthalan has a low but unexpected barrier to planarity in S 0 which disappears as 
the five-membered ring becomes more rigid in the excited state. 1,2-Benzodioxole 
is non-planar in S 0 due to the anomeric effect. In Sj the anomeric effect and 
barrier increase as suppression by interactions with the benzene ring is decreased. 
Indan has a much higher barrier to planarity than the similar cyclopentene. This 
barrier decreases in Ab initio calculations do a remarkably good job in 
predicting barriers for the electronic ground sate (less so for indan), but the 
methodology for excited state calculations is not as well established. 
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Chapter 20 

Semiclassical Time Evolution in the Forward-
Backward Stationary-Phase Limit 

Nancy M a k r i 1 and Jiushu Shao2,3 

Departments of 1Chemistry and Physics and 2Chemistry, University of Illinois, 
601 South Goodwin Avenue, Urbana, IL 61801 

3Current address: State Key Laboratory of Molecular Reaction Dynamics, Institute 
of Chemistry, Chinese Academy of Sciences, Beijing 100080, China 

Several versions of the time-dependent semiclassical approxi
mation have recently become available as practical tools for 
calculating dynamical quantities of large molecular systems. 
These methods are based on the forward-backward idea that 
combines the quantum evolution in opposite directions of time 
into a single, consecutive propagation. The forward-backward 
semiclassical propagator is not highly oscillatory and is thus 
suitable for numerical evaluation by Monte Carlo methods. 
The present article reviews a forward-backward phase space 
formulation of the Heisenberg operator that also eliminates the 
semiclassical prefactor, leading to a practical tool for calculat
ing observables and time correlation functions. 

400 © 2002 American Chemical Society 
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The last two decades have witnessed spectacular advances in the theoretical 
description of low-energy electronic states. The Born-Oppenheimer approxima
tion is usually sufficiently accurate in this regime, allowing separation of the 
problem into (a) the electronic structure calculation, which yields a potential sur
face on which the nuclear motion takes place, and (b) simulation of the nuclear 
dynamics on this surface. Essentially every available tool of quantum mechanics 
has been employed in the development of electronic structure methods, and reli
able calculations can now be performed in systems with tens of atoms. Simi
larly, a host of quantum and classical mechanical ideas have been used to de
scribe the dynamics of the atomic nuclei, although progress in this direction has 
been hampered by some serious difficulties. Currently, simulations of time-
dependent properties in polyatomic molecules, clusters, or condensed phases 
employ a variety of approximations, which are largely built around variational, 
perturbation, quantum-classical or semiclassical ideas. While approximate tech
niques have proven extremely valuable in many situations, their regime of appli
cability is limited. Perhaps more importantly, checking die accuracy of the re
sults is usually completely impractical, and thus reliability becomes a significant 
concern. 

The fundamental obstacle in the numerical solution of the Schrôdinger equa
tion is storage of the multidimensional wavefunction, which occupies a volume 
that grows exponentially with the number of particles. This limitation is circum
vented in the path integral formulation, where quantum mechanical transition 
amplitudes are expressed as sums over paths with complex-valued phases (1,2). 
Because of the rapid oscillation of the phase, however, numerical evaluation of 
the real-time path integral by means of stochastic methods is plagued by severe 
numerical instabilities (3,4). Moreover, explicit summation over all paths is far 
from feasible, as their number (if space and time are discretized) increases expo
nentially with the number of degrees of freedom and the total propagation time. 
The same phase cancellation problem is encountered in the semiclassical ap
proximation (5,6). In this, the propagator is expressed as a sum of complex-
valued amplitudes, but here the summation is restricted to paths that satisfy the 
classical equations of motion. Significant advances, most notably the formula
tion of initial value representations (7-16) and the development of filtering pro
cedures (17-22), have enabled calculations in several models and chemical sys
tems (23-35) Further progress has been made recently with the development 
(36-48) and application (49-54) of forward-backward semiclassical methods. 
The latter exploit the structure of observables, which involve a pair of time evo
lution operators that propagate in opposite directions. By combining the two 
propagators into a single forward-backward step the action integral that gives 
rise to the semiclassical phase becomes small, leading to a smooth integrand 
amenable to Monte Carlo methods. 
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A practical forward-backward semiclassical dynamics (FBSD) methodology 
is reviewed in this Chapter. This uses a derivative identity to bring a Heisenberg 
operator into a form suitable for application of the forward-backward semiclassi
cal approximation. The result is an attractive expression in which the semi-
classical prefactor is eliminated and which can also be brought into the form of a 
quasiclassical average. Combined with suitable representations of the initial 
density, this version of FBSD provides an efficient tool for following time-
dependent observables or correlation functions, offering an accurate description 
of the dynamics in polyatomic systems. 

The Semiclassical Propagator 

For a system of η degrees of freedom, the time-dependent semiclassical ap
proximation to the quantum mechanical propagator between two coordinate 
points takes the form (5,6): 

<x2|t/(i)|x,)sc= Σ D w ( * ^ 2 / W * ^ (D 
classical 

paths xk (tf) 

Here Dyy is the semiclassical prefactor given by one of the elements of the sta
bility matrix, 

1 

η 
D y V = ( M ) 2 

and μ is the Maslov index (55) which supplies the proper phase by keeping 
track of focusing characteristics of the classical trajectories. The sum in Eq. (1) 
arises because there are in general multiple solutions to the boundary value prob
lem specified by the endpoint constraints imposed on the classical paths. 

Eq. (1) represents die stationary phase approximation to the full quantum 
mechanical propagator, which in Feynman's path integral formulation takes the 
form of a sum over all paths. This can be seen directly by realizing that the sta
tionary phase condition amounts precisely to Hamilton's principle, and inclusion 
of quantum fluctuations within a tube of size h around classical trajectories 
gives rise to the semiclassical prefactor. 

In practical applications, the propagator is usually integrated with respect to 
both endpoints. Miller has shown (8) that a change of integration variables 
brings a semiclassical expression in the form of an intial value representation, 

det 
3 25 

dx,dx2 

(2) 
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where relevant classical trajectories are specified by their initial position and 
momentum, such that one does not need to identify solutions to a double-ended 
boundary value problem. The optimal initial value representation is in phase 
space. Herman and Kluk have shown (10,11) that the semiclassical evolution 
operator can also be brought into the form 

£/(0 = (2^)-ημχο /φ 0 ^«(«ο,ιΐο^^Ιί^/,Ρ/ΐΧίίίο,Ρο)! Ο) 

Here Χ / , P / stand for the final coordinate and momentum of a classical trajec

tory with initial conditions x 0 ,Po and the coherent state wavefunction is defined 

as 

η 

(x |g (x 0 , p 0 ) ) = ̂ j 4 ( d e t r ) 1 / 4 e x p 
- ( Χ - Χ 0 ) Τ · Γ · ( Χ - Χ 0)+7·Ρ Ο·(Χ - Χ Ο ) η 

(4) 

Finally, the coherent state prefactor is given by the expression 

3xf dpf — i _ + — L . 
{dx0 3p0 

-2ΐΛΓ· 
3x / 1 r ~ i 3 P / 
3p0 2ih 3x0 

(5) 

Other phase space representations are also possible (12,13). 
While the above advances bring semiclassical expressions in desirable 

forms, allowing determination of trajectories from their initial conditions, serious 
problems arise when these expressions are applied to many-body systems. To 
obtain observables, it is necessary to evaluate the multidimensional phase space 
integrals that arise via Monte Carlo methods. This is an extremely demanding 
task because the integrand is a highly oscillatory function of the integration vari
ables. It is well known that Monte Carlo methods fail to converge in such situa
tions (3,4). 

Fortunately, progress can be made because the Heisenberg operator in
volved in the evolution of time correlation functions or the quantum mechanical 
density matrix involves not only the forward time evolution operator but also its 
inverse. It is well understood that a dramatic phase cancellation takes place be
tween these two propagation steps upon integration, and this cancellation is en
tirely responsible for the failure of Monte Carlo methods. To remedy this situa
tion, Makri and Thompson proposed a forward-backward semiclassical ap
proximation (36) in which the time evolution operator and its inverse are com
bined into a single semiclassical treatment. This procedure is equivalent to a sta-
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tionary phase evaluation of the integral between the two propagators. The suc
cess of the idea lies in the fact that the relevant trajectories are integrated along a 
forward-backward time contour and thus the net action tends to be small, leading 
to a well-behaved integrand. 

Originally, FBSD was formulated in the context of the influence functional 
(2) entering the path integral representation of quantum dynamical quantities, for 
which the forward-backward approximation is unique (36,38). Miller and co
workers (37,40,43,47,48), as well as our group (39,41,42,44-46) have extended 
FBSD to time correlation functions. The presence of an arbitrary operator be
tween the forward and backward propagators leads to several distinct versions of 
FBSD. In the following section we review the derivative form of F B S D ob
tained by Shao and Makri for general correlation functions (41,42). As trajecto
ries are nearly continuous at the midpoint in time, it is possible (47) to bring the 
F B S D expression in a form where the semiclassical prefactor is eliminated, and 
also in the form of a quasiclassical average. These simplifications result from 
the neglect of quantum interference. While other versions are superior in terms 
of accuracy, the simplicity and dramatic efficiency attained by the derivative ver
sion of F B S D make it presently the method of choice for simulating processes in 
large clusters or in solution where dephasing interactions are a natural source of 
decoherence and thus FBSD can be quantitative. 

Forward-Backward Semiclassical Dynamics 
Without Prefactors 

Systems of many atoms are usually characterized in terms of ensemble-
averaged quantities, such as correlation functions or the reduced density matrix. 
Consider, for concreteness, a correlation function of the type 

C(t) = Tr(p(0)AeiHmBe-iHm ) = Tr(p(0)A£(f)) (1) 

where p(0) is the equilibrium density matrix and A, Β are arbitrary operators. 
The Heisenberg operator B(t) contains two propagators in opposite times and 
this structure can be exploited to reduce die severity of the sign problem. 

A particularly practical expression is obtained by expressing B(t) in the 
form of a derivative, namely 

(2) 
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The product of three exponential operators in this expression can be interpreted 
as propagation under the time-dependent Hamiltonian (37) 

Η(ί') = Η-ημΒδ(ΐ'-ί). (3) 

Thus, B(t) is approximated by a single semiclassical propagator for the time-
dependent Hamiltonian of Eq. (3). The last term of this Hamiltonian imposes 
discontinuous jumps of the coordinates and momenta of a classical trajectory at 
the end of the forward propagation time t: 

Sxt =-hMVpB(xnpt% δρ(=ημνχΒ(χηρ{) (4) 

SS=pt Sxt + %μΒ(χί^ί ) (5) 

Inserting the Herman-Kluk representation of Eq. (2) into the correlation func
tion, we showed in References (41) and (42) that the correlation function can be 
brought into the form 

C(t) = -i(^hr^a^\dp0^-[eiS^)m <g(xo,Po)| /KO)A |g( X / , P /))]k_ o (6) 

In this, the semiclassical coherent state prefactor has been ehminated. To com
pensate for its absence, the position, momentum and action jumps arising from 
the infinitesimal evolution with Η have been rescaled. Thus, the trajectories 
must incur the following increments at time t: 

(7) 

SS = hMB(qt,pt)+prSqt. 

Miller and coworkers have shown (47) that the derivative in the prefactor-free 
FBSD expression can also be eliminated. Below we generalize their result to a 
general operator depending on coordinates and/or momenta and a multidimen
sional Hamiltonian. For this purpose, we rewrite the semiclassical Heisenberg 
operator as the sum of three terms, 

5 (0 = ( 2 ^ Γ Λ | ώ ί 0 | φ 0 ( Β 1 + Β 2 + Β 3 ) | ^ ( χ ο , Ρ ο ) } ( ^ ( Χ θ ' Ρ ο ) | » <8> 
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where Βλ, B2, and B3 are contributions from the prefactor, the action and the 
final state respectively, which assume the explicit forms: 

H = i ( x - X o ) - r -
μ=0 

2δ 
μ=0 

(9) 

B 2 = B ( x f , p f ) + I p 0 - ^ 

3x , 
£ 3=-2ΐ ( χ - χ 0 ) . Γ · —i 

l//=0 

9p/i 

μ=0 
+ T ( x - x 0 ) 

1 3x/ 
- Τ Ρ ΰ · — 

l//=o 
3// 

(10) 

(11) 

l//=o 

Summing up these contributions yields 

Β0) = (2πη)'η1άχ0\αψ0 # ( χ , , ρ , ) - ϊ ( χ - χ 0 ) · Γ · 
dxt 

3// 
μ=0 (12) 

+ — ( χ - χ ο ) · — ^ 
2/i 9// 

G(xo>Po)> 

where G(xo.Po) = |5(xo»Po))(s(xO'Po)| denotes the coherent state projection 

operator. Note that 3x^/9// = -ftVp Β(χ , ,ρ , ) and 3p / /3 i u = ftVXoB(xt)pf) at 

μ = 0. Using the relations 

V X o G(x 0 , p 0 )=2r [ (x -x 0 )G(x 0 > p 0 )+G(x 0 ) po) (x -Xo) ] .(13) 

and 

v

P o G(xo .Po>=7[ x G ( x o>Po) - G ( x o>Po) x ] (14) 

and integrating by parts, the above expression can be simplified as 

B(0 = (2jrt)"" J<fcoJ*oB(« f ,p, )([l+lfi]G(«o,Po) 

- 2 ( x - x 0 ) - r - G ( x 0 ) p o ) ( x - x 0 ) ) 
(15) 
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Substitution of this result into Eq. (1) leads to the following expression for the 
correlation function: 

Equations (6), (15) and (16) can be viewed as the stationary phase approxi
mation to the conventional semiclassical representation of the Heisenberg opera
tor or the correlation function in which each evolution operator is expressed as a 
separate Herman-Kluk propagator. The additional stationary phase approxima
tion implicit in these prefactor-free expressions imposes continuity of the trajec
tories at time t (i.e., the discontinuities in Eq. (7) are infinitesimal), eliminating 
possible cross terms corresponding to distinct forward and backward trajectories. 
The consequence of this is loss of interference. Indeed, Eq. (16) has the struc
ture of a quasiclassical trajectory average similar to the Wigner formalism 
(32,56,57) Combined with an accurate treatment of the factors involving the ini
tial density, these expressions provide a rigorous, yet practical way of including 
quantum effects in classical trajectory simulations. Since the only dynamical 
quantity entering Eq. (16) is a function of the position and momentum along a 
classical trajectory, it is a simple matter to evaluate this expression using accu
rate force fields employed in standard molecular dynamics calculations or ob
taining the forces through "on the fly" ab initio electronic structure calculations. 

Implementation of the FBSD schemes requires knowledge of the initial den
sity matrix in the coherent state representation. Usually, the initial density corre
sponds either to the ground vibrational state of a polyatomic molecule or a 
Boltzmann distribution. Below we describe ways of obtaining the coherent state 
matrix element through closed form expressions or in terms of an imaginary time 
path integral evaluated along the same Monte Carlo random walk which samples 
the trajectory initial conditions. 

Gaussian Initial State 

When the system is initially at zero temperature the harmonic approximation 
about the potential minimum is often satisfactory. Since the corresponding 

C(t) = (2*ft)-fdkojdfco([l+i«](sx 0 ) P o | />OA|S*O.PO) 

(16) 

Coherent State Density Matrix 
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wavefunction is a product of Gaussians in the normal mode representation, the 
coherent state matrix element involves evaluating a Gaussian integral. For in
stance, i f the initial density operator has the form 

Α ) = | φ ο ) ( φ ο | 

where 

then one finds 

(^(^^o)|P(0)U(Ab,Po)) = 2 ^ 

and 

xexp Po 

( Π ) 

(g (*o * Po ) I (χ ~ xo )P(0)(x - XQ ) I g(x0, Po )} 
\2 

α+γ) 

2 
Po 

4h2(a+y)2 
(g(xo>Po)\p(°)\g(xo>Po)) 

(18) 

The multidimensional generalization of these equations is straightforward. Ex
pectation values are readily obtained from Eq. (15) and these expressions. Simi
larly, i f the operator A is given by a low-order polynomial, the coherent state 
transform of pQA can be evaluated analytically. 

Finite Temperature 

When the initial condition is given by the Boltzmann operator, the coherent 
state matrix element generally cannot be calculated exactly. The most accurate 
and general procedure in such cases is its path integral representation (58). 
Thus, the coherent state representation of a Boltzmann-weighted operator is writ
ten in the form 
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χ(χ,\e-w> | χ 2 ) . . . ( χ „ μ - ^ ο - | X i V + 1 ) (i9) 

Χ Α ( χ Λ , + 1 ) ( χ Λ , + 1 | « Χ ο Ρ ο ) 

and 

(«χ0.Ρο |(x ~ χ ο ) · Α ( χ " χ ο )| « χ ο , ρ , ) = , Κ • •·/*»+! 

χ ( ^ , 0 | ( χ - χ ο ) ^ Ί - 1 > ^ ( , " > 

χ ( χ 1 μ - ^ » | χ 2 ) . . . β - ^ ) ( χ Λ , μ - ^ ' 2 | χ ί ν + 1 ) 

Χ Α ( χ ^ + 1 ) · ( Χjv+i - Χο ) (xw+i I £ χ 0 ,ρ0 ) 

(20) 

The various coherent state matrix elements are easily evaluated analytically. 
Jezek and Makri have described a Monte Carlo procedure for calculating the 
FBSD expression for a correlation function in conjunction with a path integral 
treatment of the Boltzmann operator (45). If the operator A has a simple form, 
for example, i f it is a linear function of position or momentum, the last integral in 
the above equations can also be performed analytically. 

Numerical Examples 

The performance of the prefactor-free FBSD expressions, Equations (6) or 
(15), is clearly illustrated in several numerical examples. The first involves the 
average position in a model of an initially displaced quartic oscillator described 
by the Hamiltonian (41) 

2 1 

H = - £ - + - L m â > V -fcc3 +bx4 (21) 
2m 2 

with m = 1, b = 0.1 and ω = V2 , coupled to a bath of 30 harmonic degrees of 
freedom at zero temperature. As seen from Figure 1, for zero coupling FBSD 
reproduces the first several oscillations qualitatively but déphasés faster than the 
exact result and fails to capture the revivals of the correlation function, unlike 
the full semiclassical treatment that produces very accurate results for this sys
tem. Weak system-bath coupling, whose strength is commonly characterized by 
the dimensionless Kondo parameter ξ (59), introduces dissipation that leads to 
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considerable quenching of the oscillations, and FBSD follows closely the exact 
results obtained via iterative evaluation of the path integral (60-62) as displayed 
in Figure 2. 

0 5 10 15 20 25 30 35 40 
t 

Figure 1. Average position for a one-dimensional quartic oscillator. Solid line: 
exact results obtained via the split propagator method. Solid circles: FBSD. 

Hollow squares: full semiclassical calculation. 

Figures 3 and 4 show numerical results obtained by Jezek and Makri (45) 
for the position correlation function of the same one-dimensional quartic oscilla
tor at two temperatures such that Ηωβ = yfî /10 or 3yfï. The Boltzmann opera
tor was discretized using up to Ν = 6 path integral slices. The effects of poten
tial anharmonicity are seen as dephasing of the correlation function, which be
comes more significant as the temperature is increased. At the higher tempera
ture the FBSD-path integral results are practically exact. At lower temperatures 
the F B S D results are still accurate during the first few oscillation periods but 
tend to overestimate somewhat die dephasing rate. Note that in both cases the 
overall magnitude and oscillation frequency of the real and imaginary parts of 
the correlation function obtained from the FBSD-path integral calculation are in 
good agreement with the exact results. By contrast, the purely classical calcula-
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tion is accurate only at high temperature, and significant discrepancies from the 
exact results are observed away from that limit. As expected, the classical ap
proximation cannot reproduce the correct magnitude of the correlation function 
at low temperatures, and the classical oscillation period is larger than that pre
dicted by the quantum mechanical calculation, a consequence of the neglect of 
zero point energy in the classical treatment. Even more importantly, the classical 
method can only yield real-valued results and thus fails to provide any informa
tion about the imaginary part of the correlation function. The latter is as sizable 
as the real part at low temperatures and plays an important role in determining 
the shapes of absorption spectra. The FBSD methodology with a path integral 
treatment of the Boltzmann factor does not suffer from the above artifacts of the 
classical approximation and thus provides a reasonably accurate, yet practical al
ternative to a full quantum calculation. 

Shao and Makri have used FBSD to calculate correlation functions of vari
ous normal modes in clusters of two and four water molecules. The largest of 
these clusters has 30 active degrees of freedom and the calculation involves a 60-
dimensional integral which was evaluated with only 2,500 sampling points per 
integration variable (42). Typical results are shown in Figure 5. 

-1 I . . . , , ι , , . , . i . . I 
0 3 6 9 12 15 

t 

Figure 2. Average position of a quartic oscillator coupled to a bath of 30 har
monic degrees of freedom at zero temperature. The markers show the results of 
FBSD. Filled circles: ξ = 0.25. Hollow circles: ξ = 0.50. The lines show the 

exact results. 
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Ο 5 10 15 20 25 30 35 
cot 

Ο 

ε 

Figure 3. Real and imaginary parts of the position correlation function for the 
quartic oscillator described in this section at a high temperature, 

ftûj0 = >/2/lO. Solid lines: exact quantum mechanical results. Markers: 
FBSD-path integral results with Ν = 1 and 10,000 Monte Carlo points per in

tegration variable. Dashed lines: classical results. 
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0)t 

Figure 4. Real and imaginary parts of the position correlation function for the 
quartic oscillator described in this section at a high temperature, %ωβ = 3Λ/2 . 
Solid lines: exact quantum mechanical results. Markers: FBSD-path integral 
results with Ν = 6 and 10,000 Monte Carlo points per integration variable. 

Dashed lines: classical results. 
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50 

-30 1 ' ' 1 « 1 ' 1 1 

0 5 10 15 20 25 30 35 
t . f s 

Figure 5. Correlation function of the O-H stretching normal mode of 
the water tetramer at zero temperature. The real and imaginary parts 

are shown as solid circles and hollow squares, respectively. 

Concluding Remarks 

Forward-backward semiclassical methods are emerging as a powerful nu
merical tool in quantum dynamics. The forward-backward implementation of 
the time-dependent semiclassical approximation circumvents the sign problem 
by shifting the troublesome cancellation of oscillatory terms to a cancellation be
tween actions. Although this step tends to wipe out quantum interference, vari
ous versions of FBSD can be very successful in describing the dynamics of 
polyatomic systems at finite temperature where long-lasting coherences are natu
rally suppressed. Combined with a path integral treatment of the Boltzmann op
erator, F B S D can properly account for initial conditions, including zero point ef
fects and frequency shifts, and captures quantitatively the imaginary parts of time 
correlation functions. 

Apart from combining efficiency and reasonable accuracy, an appealing fea
ture of the present FBSD scheme reviewed in this Chapter is its simplicity and 
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ease of implementation. It is thus expected that FBSD and its forthcoming ex
tensions will soon become the method of choice for large-scale simulations on 
molecules, clusters, and condensed phase systems. 
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Chapter 21 

Development and Application of an Ab Initio 
Methane-Water Potential for the Study of Phase 

Equilibria of Methane Hydrates 

Zhitao Cao, Brian J. Anderson, Jefferson W . Tester, 
and Bernhardt L. Trout* 

Department of Chemical Engineering and Energy Laboratory, Massachusetts 
Institute of Technology, Room 66-556, 77 Massachusetts Avenue, 

Cambridge, MA 02139 

A n ab initio potential for the methane-water bimoleeular system 
has been developed for use in modeling methane hydrates and in 
order to evaluate currently used statistical thermodynamic models. 
In this paper, an introduction to gas hydrates is first given, and the 
problem with the Lennard-Jones and Devonshire (LJD) 
approximation, typically used for modeling hydrates, is described. 
Second, the methodologies for generating the ab initio potential 
energy surface are described and results discussed. Third, 
computed phase equilibrium data for methane hydrates using the 
obtained ab initio potential are presented and compared to 
experimental data. Finally, results regarding the issue of the 
reference state for the statistical thermodynamic model, including 
analysis and determination of reference state properties via ab 
initio calculations, are given. 

418 © 2002 American Chemical Society 
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Introduction 

Natural gas clathrate-hydrates (called gas hydrates) are systems of 
polyhedral cells formed by hydrogen-bonded water molecules. These form 
nonstiochiometric inclusion compounds consisting of a three-dimensional host 
lattice of water molecules, in which guest molecules, such as methane and/or 
carbon dioxide, are encaged. A n illustration of the empty lattice structure of 
Structure I hydrates is shown in Figure 1. The development of production and 
transmission operations for conventional natural gas hydrates depends on the 
ability to model and make quantitative predictions of methane hydrate behavior. 
Since the late 50's, the van der Waals and Platteeuw statistical mechanical 
model with the Lennard-Jones and Devonshire (LJD) spherical cell potential 
approximation (1,2) has been the basis of most modeling efforts. However, our 
studies, as well as other previous work, have demonstrated the inadequacy of 
the LJD approximation (3,4). Moreover, such inadequacy has long been 
surmised based on the fact that potential parameters computed from gas-hydrate 
phase data using the LJD approximation do not match those computed from 
other experimental data (4-6). Thus, present methods can be used to fit 
experimental data, but cannot be generalized to make accurate predictions. 
Proper determination of the form of the intermolecular interaction potential is 
necessary both to compute equilibria thermodynamic properties and to perform 
classical simulations of kinetic phenomena such as formation and dissociation. 
Experimental techniques, however, cannot be used easily to determine the 
physical interaction potential. Our objective is therefore to use methods of 
computational chemistry to develop an accurate and robust multi-dimensional 
potential between guest and host molecules and then apply it to phase equilibria 
and kinetics studies. 

The Lennard-Jones 6-12 and Kihara potentials are commonly chosen to 
represent average interactions between the lattice (water) and guest molecules 
(methane, ethane, etc.). The parameters in these potentials are often determined 
by mixing the potentials for pure component water and pure component guest 
molecules. Lennard-Jones parameters for liquid hydrocarbons have been 
optimized to reproduce experimental densities and heats of vaporization with an 
accuracy of approximately 5% in what is termed the OPLS model (7). A 
popular model for water is the TIP3P model, which has, on the oxygen and 
hydrogen atoms, three point charges to represent the dipole and Lennard-Jones 
parameters centered on the oxygen atom. TIP3P has been parameterized to 
reproduce liquid water properties very well (8). However, using a simple 
mixing rule, the TIP3P model for water and the OPLS model for hydrocarbons 
failed to give a reasonable Langmuir constant, a key term in the van der Waals 
and Platteeuw statistical model, for several hydrates (3,9,10). 
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Figure 1. Ball and stick model of Structure I clathrate with two unit cells 
(SOURCE: Adapted with permission from refrence 20. Copyright 2001 
American Institute of Physics) 
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Recent work by Bazant and Trout has uncovered the possibility of 
extracting a spherically averaged cell potential directly from experimental data 
that can be used to represent the interaction energy between a guest molecule 
and the surrounding cage {11). This method, which involves an analytical 
"inversion" based on the van der Waals and Platteeuw statistical model together 
with the LJD approximation, is simpler and more meaningful than the empirical 
fitting of Kihara potentials. Bazant and Trout showed the adherence of the 
extracted cell potentials of cyclopropane and ethane Structure I hydrates to the 
ideal van't Hoff temperature dependence. Additional work by Anderson et al. 
expanded the cell potential method to include the Structure II hydrates of 
cyclopropane, propane, and isobutane and showed that these cell potentials can 
be used to predict independently the phase behavior of hydrates containing 
mixtures of guest molecules (12). 

Our approach, an alternative approach to fitting experimental data, is to 
compute the potential directly from first-principles or ab initio methods. Such 
an approach would provide a direct route to determine the intermolecular 
potential, which can then be validated independently using experimental data. 

Ab initio Calculations 

Methodology 

Several research groups have investigated the accuracy and efficiency of ab 
initio calculations in characterizing methane-water interactions. In Monte Carlo 
(MC) studies of aqueous solutions of methane, Owichi and Scheraga (73) and 
Swaminathan (14) used an intermolecular potential energy based on ab initio 
calculations. Novoa et al. (15) performed ab initio calculations on methane-
water at the self-consistent-field molecular orbital (SCF-MO) and MP2 levels 
with various quality basis sets, including a near Hartree-Fock Limit (NHFL) 
case. Szczesniak et al. (16) then explored more configurations between methane 
and water using fourth-order Moller-Plesset perturbation theory with the basis 
set, 6-31++G(2d,2p). Both of the previous studies showed that diffuse functions 
are necessary to remove the basis set superposition error (BSSE). Novoa et al. 
(17) continued to perform a numerical test of evaluating interaction energy 
using very large basis sets for Η 2 0 · HF and C H 4 · Η 2 0 at the MP2 level. They 
suggested that the counterpoise (CP) method provides reasonable estimates of 
the interaction energy when the basis set is large enough. The qualified 
adequate basis sets resulting from their study consist of Near Hartree-Fock 
Limit (NHFL) (4d3f, 4p3d), 6-31++G(4d3f,4p3d), and cc-pVQZ. 
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In our study, accuracy and computational intensity of various methods and 
basis sets were compared, and the best approach was carefully selected. Using a 
moderately accurate method, 18,000 points on the 6-dimensional potential 
energy hypersurface between methane and water were computed. About 100 
points on this hypersurface were computed with a highly accurate method, and 
using these points, a correction method was developed for the entire 18,000 
points on the hypersurface. The computed multi-dimensional interaction 
energies were then averaged to construct a robust spherically symmetric radial 
potential for use in computations involving methane hydrates. 

The potential energy hypersurface was computed as a pair potential 
between the carbon on methane (C) and the oxygen on water (O), choosing the 
C - 0 distance as the interaction distance r. The center of mass distance was not 
chosen because the crystallographic structural data (18,19) of clathrate hydrates 
directly gives the position of the oxygen atom within the lattice. Six 
dimensions, the three dimensions characterizing the relative positions of C H 4 

and H 2 0 and the three Euler angles of C H 4 , were sampled on the potential 
energy hypersurface. The full MP2 method was found to describe electronic 
correlation accurately, but a very large basis set, cc-pVQZ, with counterpoise 
correction was necessary to compute accurate energies of interaction by 
minimizing BSSE. Because MP2/cc-pVQZ calculations are quite compute-
intensive, even for this small system, C H 4 - H 2 0 , MP2/6-31++G(2d,2p) 
calculations were performed to compute energies of all 18,000 points. The 
correction method developed uses the results of -100 MP2/cc-pVQZ 
calculations in order to achieve nearly MP2/cc-pVQZ accuracy for all 18,000 
points. We expect -0.1-0.2 kcal/mol accuracy via this approach. 

The geometries of the hydrocarbon guest (i.e. methane) and water molecule 
host were fixed in the calculations with each molecule optimized separately at 
the MP2/6-31++G(2d,2p) level. The optimized geometries of water and 
hydrocarbons compare favorably with the experimental data (20). The choice of 
orientations between the guest molecule and the host water molecule was made 
based on possible orientations in the actual clathrate structure. By inspecting 
the ball and stick model of a Structure I clathrate hydrate with two adjacent unit 
cells, shown in Figure 1 (methane forms a Structure I clathrate hydrate (9)), the 
relative orientations between the guest and water molecule mainly fall into the 
two types characterized by the plane containing the water molecule as shown in 
Figure 2. The position of the guest molecule is moved in a coordinate system 
(similar to a spherical coordinate system) where the water oxygen is the origin. 
The rigid body of the guest molecule is further rotated using the three classical 
Euler angles (α, β, γ) (21). The six-dimensional grid is illustrated in Figure 3, 
where r, ξ and φ are the coordinates used to define the position of methane 
carbon with the water oxygen as the origin. The ξ and φ coordinates were used 
instead of the spherical coordinates, θ and φ, in this study for generation of the 
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Figure 3. The six dimensions (r, ξ, φ, α, β, γ) used to define the orientation 
between a methane guest and water host molecule (SOURCE: Adapted with 
permission from refrence 20. Copyright 2001 American Institute of Physics) 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Se

pt
em

be
r 

14
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
4,

 2
00

2 
| d

oi
: 1

0.
10

21
/b

k-
20

02
-0

82
8.

ch
02

1

In Low-Lying Potential Energy Surfaces; Hoffmann, M., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2002. 



425 

18,000 different input files for use in Gaussian 94 (22). Ten points from 2.4*6.0 
À are sampled in the radial dimension, considering the constraints of the 
clathrate cage. Five equally spaced points from -40° to 40° were considered to 
be sufficient for methane-water phase space sampling for ξ and φ. Three points, 
0° , 40° and 80°, were sampled for α and ^and four points, 0° , 90°, 180° and 
270°, were used in sampling β. 

The interaction energy between methane and water can then be expressed 
as 

AE =E -Ε -E 0) 
" ^ c p mw m,cp w,cp 

where \Ευμ is the interaction energy, or binding energy, computed with the 
counterpoise method, Emw is the total energy of the methane-water complex 
system at a specific configuration, and £ m c p and gwcp

 a r e & 6 counterpoise-
corrected energies of the methane and water molecules. For each radial 
position, there are two different water planes and 5 x 5 x 3 x 4 x 3 = 900 
orientations of the methane molecule. In order to combine the 900 χ 2 = 1800 
interaction energies to obtain one angle-averaged energy at each specific 
interatomic distance between guest and host molecules, Boltzmann-weighted 
averages were performed at the temperature of interest. 

Molecular orbital theories (ab initio methods (23)) were chosen and 
validated in this study to characterize the interaction energies between methane 
and water, while electron density functional theories (24) were tested, but found 
to be inadequate (see below). Four different ab initio methods were used in the 
validation: MP2 (25,26), MP4(SDTQ) (27), QCISD(T) (28) and CCSD(T) (29). 
Three different DFT methods, B L Y P (30,31), B 3 L Y P (32) and BPW91 (33), 
were used and the results compared with the ab initio methods. In addition, for 
each of the above methods, the effect of the size of different basis sets was 
investigated; specifically, 6-31++G(2d,2p), cc-pVDZ, cc-pVTZ and cc-pVQZ 
were used. 6-31++G(2d,2p) was chosen, because it was reported to yield 
reasonable results compared with that at near the basis set limit on this system 
(17). The others were chosen in order to observe the effect of systematically 
increasing the size of the basis set. Gaussian 94 (22) was used for all the above 
calculations. 

The "Binding Energy Difference" for use in our correction method is given 
by 

^BED ~ ^EMethodlcc-pVQZ ~ ^MP2/6-3l++G(2d,2p) 
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Although the binding energies calculated at the MP2 level are slightly 
higher than those calculated using the other three methods, the MP2 method was 
still selected for the calculations due to the computational time issue and the fact 
that the binding energy difference is no more than 0.05 kcal/mol. 

The correction method that we have developed achieves binding energy 
results nearly as accurate as MP2/cc-pVQZ from predominantly MP2/6-
31++G(2d,2p) computations. The correction method provides a functional form 
that gives results proportional to the correction for basis set at any orientation of 
H 2 0 - C H 4 pair. The numerical value given by this functional form is referred to 
as the "basis set correction factor". In the correction method, the binding 
energy difference, or energy correction, between binding energies computed 
with MP2/cc-pVQZ and MP2/6-31++G(2d,2p) is 

SEBED=C^MW (3) 

where SEBED is the binding energy difference, Q is a proportionality constant 
determined via a modified factorial design, and <Bmw is the form of the "basis set 
correction factor". The functional form for i> w w was chosen as the form of the 
interaction between a polarizable methane molecule and a water molecule with a 
permanent dipole moment (34). Note that any convenient mathematical form 
could be chosen as long as it adequately describes the numerical "basis set 
correction factor". 

From classical electromagnetic field theory (34,35), Eq. 4 is the functional 
form selected to represent O m w . 

φ ^ = g

 1

 3 [θ** ·μ.)-3(μΒΙ-rmwfaw -rmJ/rm

2J (4) 

where μ is the dipole moment vector, m and w indicate methane and water 
respectively, rmw is the vector of carbon on methane with respect to oxygen on 
water as origin, and rmw is its length. Details of the derivation and choice of Eq. 
4 is can be found in Ref. 20. 

In our study, the polarizability tensor of methane calculated from Gaussian 
94 (22) is isotropic within the numerical accuracy of the calculation. Therefore 
the formula and calculations could be simplified. However, for most guest 
molecules in clathrate hydrates that are not as symmetric as methane, this 
derivation gives a general approach to characterize the induced dipole-dipole 
interaction. 

The next step was to determine the proportional factor Q in Eq. 3, and test 
the chosen form of the "basis set correction factor". The C/'s were determined 
from a number of MP2/cc-pVQZ runs selected from a modified experimental 
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fractional factorial design (36). The main objective of the experiments (the 
selected MP2/cc-pVQZ runs) is to assess the effects of distance and five angles 
on the "basis set correction factor". A simple efficient filter was used to screen 
the factors with the minimum number of runs needed to fully explore the six-
dimensional methane-water hypersurface (20). 

In order to develop a spherically symmetric radial potential, a Boltzmann-
weighted average was taken at each radial point to integrate out effectively the 5 
other degrees of freedom. The average interaction energies at each interatomic 
distance r are 

1800 

£A£ c , (r )exp(-A£ c , , (r ) /A:r) ( 5 ) 

= "=Η* 
Σοιρί-ΔΕ,,Ο·)/»·) 
1=1 

where k is the Boltzmann constant and Τ is the absolute temperature. Thus, a 
particular value of Τ must be used to perform the average. Note the potential 
profile calculated by Eq. 5 is based on C-0 distance. In order to compare with 
experimental data, the averaged center-of-mass distance was also calculated. 

Experimental dissociation pressure-temperature data that exist for hydrates 
typically range between 260 Κ and 300 Κ (37). Over this temperature range, the 
effective energy profile does change significantly. For comparison in this study, 
the melting point of ice, 273.15 K , was chosen for use in Eq. 5. The resulting 
potential profile is compared below with experimental data and other simple 
potential forms. 

Results and discussions 

In order to evaluate the choice of basis set, we chose to perform 
calculations using several different basis sets on the optimized (minimum 
energy) H 2 0 - C H 4 structure. The binding energies computed using these six 
basis sets are plotted in Figure 4. Figure 4 shows that the binding energy 
calculated with the cc-pV*Z series monotonically increases (except the one 
calculated using the AUG-cc-pVQZ basis set), and the one computed with cc-
pVQZ approaches the asymptotic value within 0.1 kcal/mol. It would be 
preferable to use the AUG-cc-pVQZ basis set, but this would have led to a 
substantial increase in computational time, already quite large. Binding energies 
computed using several different methods to treat electron correlation are 
presented in Table I. 

From the above studies, we can come to several conclusions. As expected, 
the three DFT methods predict binding interactions between methane and water 
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I -0.101 

« -0.20 + 

Χ -0.30 

g -0.40 + 

gf -0.50 + 

1 -0.60 + 
m 

Ο -0.70 + I -0.80 + 
υ -0.90 + 

• MP2/cc-pVDZ 

#MP2/6-31++G(2d,2p) 
• MP2/ce-pVTZ 

MP2/cc-pVQZ 

MP2/AUG-cc-pVQZ# 
MP2/cc-pV5Z 

100 200 300 400 
Number of basis functions 

500 
—I 
600 

Figure 4. The effect of size of the basis set on estimated binding energy of 
optimized CH4-H20 complex (SOURCE: Adapted with permission from 
refrence 20. Copyright 2001 American Institute of Physics) 
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that are much weaker than those predicted from ab initio methods. The 
counterpoise method is definitely needed to calculate accurately the binding 
energy between methane and water. When the basis set is increased from cc-
p V D Z to cc-pVQZ, the deviations of binding energies calculated with CP and 
without CP decrease. Among the ab initio methods examined, the predicted 
C H 4 — H 2 O binding energies are within a few hundredths of a kcal/mol for all 
correlation methods tested. This agreement validates the MP2 method as 
quantitatively adequate to characterize the interaction between methane and 
water in the gas phase. The correction method we used to refine the results 
from the 18,000 points calculated using MP2/6-31++G(2d,2p) is very efficient 
and successful. Our model gives good predictions (high R2 values from 0.97 to 
0.99) of energy corrections (20), considering that it takes into account six 
dimensional effects on binding energies. 

Using Eq. 5, the profile of averaged interaction energies at different 
distances with and without the six-dimensional correction is completed and the 
entire numerical potential can be found at http://troutgroup.mit.edu/clathrate/ 
methane/potential.html. The corrected interaction potential in the repulsive 
region was even softer than the MP2/6-31-H-G(2d,2p) potential. The corrected 
potential was then adapted to a center-of-mass basis. Both potential profiles, in 
terms of C - 0 and center-of-mass distance, as well as the uncorrected potential 
are compared with the Kihara potential in Figure 5. The Kihara potential 
parameters were fitted from experimental second virial coefficient data (4,9,38). 
In the attractive region, when the distance between the carbon on methane and 
oxygen on water is at or above the minimum (r > 3.7 Â), our potential profile 
matches the experimental second virial coefficient potential very well. 
However, the ab initio potential is much softer than the experimental potential 
in the repulsive region. We believe that our potential is more accurate than the 
experimental potential in the repulsive region because the relationship (38) 
between the intermolecular potential (the Kihara potential form) and second 
virial coefficient data is accurate to the second order, that is, only when the gas 
density is low, or when the distance between molecules is sufficiently large. 
This explains the excellent agreement in the region where the distance is greater 
than the potential minimum. Second virial coefficient data, however, is not 
expected to be accurate at small distances. The Boltzmann-averaged center-of-
mass distance at the potential well of the averaged ab initio potential is 3.76 Â 
(the corresponding C - 0 distance is 3.71 Â) while the experimental value for the 
averaged center-of-mass distance between methane and water at ground state 
from far infrared vibration-rotation-tunneling (VRT) spectroscopy is 3.70 Â 
(39), another validation of our method. Additional details can be found in Ref. 
20. 
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-0.5 
2.0 3.0 4.0 5.0 6.0 

H2O-CH4 Distance (Â) 

Figure 5. Ab initio potentials (C-H20 (center-of-mass) and C-0 distance) 
compared with experimental potential (in the Kihara form based on C-H2O 
distance) obtainedfrom second virial coefficients 
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Application to hydrate phase equilibria calculations 

The most important test of our bimolecular potential is its use in statistical 
thermodynamic models for the prediction of phase equilibria. Monovariant, 
three-phase pressure-temperature measurements and invariant point 
determinations of various gas hydrates are available and are typically used to fit 
parameters in molecular computations. The key component needed for phase 
equilibrium calculations is a model of the intermolecular potential between 
guest and host molecules for use in the configurational integral. Lennard-Jones 
and Kihara potentials are usually selected to fit the experimental dissociation 
pressure-temperature data using the LJD approximation (2,4,6). Although this 
approach is able to reproduce the experimental data well, the fitted parameters 
do not have any physical connection to the properties of the molecules involved. 

In the statistical model developed by van der Waals and Platteeuw (2), the 
difference in chemical potential between a clathrate and empty host lattice is 
expressed as 

Αμβ~Η = RT^V; ln(l + ^Cjj) = J M ^ v , ln(l - (6) 

where vi is the number of type i cavities per water molecule, fj is the fugacity 
of guest molecule J which is usually calculated from a suitable equation of state 
(EOS) such as Peng-Robinson EOS (40), and yM is the fractional occupation 
probability of guest J in cavity i (yM is related to the mole fraction of the guest 
molecule in the water clathrate), given by an expression similar to the Langmuir 
isotherm 

ν - c*fj (7) 

CM is the Langmuir constant of guest molecule J in cage i , defined as 

C , , . ^ (8) 
* kT 

where ZJt is the six-dimensional configurational integral, which depends on the 

interaction potential between guest and host molecules 
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7 = __L fexp(-0Λγ,θ,φ,α,β,γ)Ι^)γ 2%ν!ΐΘάνάθάφάαάβάγ (9) 

With this thermodynamic model, we treat the clathrate as a two-component 
system. Thus, the phase equilibrium of clathrate hydrates can be described by 

αβ~Η = αβ - aH = αβ - a1 

where μβ is the chemical potential of the hypothetical empty hydrate lattice in 

which no cages are occupied by guest molecules, μ^ is the chemical potential 

of water in the hydrate phase, and μ^οτα is the chemical potential of water in 

the solid ice phase (a) or liquid aqueous phase (L) depending on whether the 
temperature is below 273.15 Κ or not. Following the convention proposed by 
Holder (41), the chemical potential difference between the water in the 
hypothetical empty lattice and the water in the hydrate phase can be expressed 
as 

kT kT0 ll kT2 JP

 0

J kT lT 

where Δμ^~ α(Γ 0 ,0) is the reference chemical potential difference at the 
reference temperature, T0, usually taken to be 273.15 K , and zero pressure. Once 
reference state values for AM°w = άμβ~α(Τ0,0), AH°W = AH^a(T0), AC^LoTa(T0) 

and AV^~lOTa(T0) are specified, άμβ~Η(Τ,Ρ) can be computed at a Γ and Ρ of 

interest using Eqs. 10-11 (9). 
Our study used two basic approaches to model or predict phase equilibria 

for methane hydrates. In Approach 1, potential forms were employed to fit the 
experimental data with and without the LJD approximation. In Approach 2, the 
intermolecular potential obtained from first principles (20) was incorporated in 
phase equilibrium computations. 

In Approach 1, experimental equilibrium three-phase dissociation pressure 
data compiled by Sloan (37), consisting of 97 points for the methane-water 
system from 148.8 to 320.1 K , were used in the parameter optimization. 
Although the fits were satisfactory, the intermolecular parameters fitted from the 
experimental data did not have much physical meaning (9). We also found that 
none of the simple potentials, including Lennard-Jones 12-6, Kihara, and 
optimized potential from liquid simulation (OPLS), were able to predict both 

(10) 
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cage occupancies and potential-distance profiles correctly when compared with 
experimental data (see Ref. 9 for more detail). Therefore, Approach 2 was 
explored to test its capability to characterize both microscopic (intermolecular 
potential profile) and macroscopic (dissociation pressure and occupancies) 
properties correctly. Based on the simple clathrate system - methane hydrates, 
the ab initio potential, developed in the previous section, was implemented to 
predict the phase diagram. 

In Approach 2, the algorithm proposed by Parrish and Prausnitz (42) was 
used in an iterative manner to obtain the converged pressure that satisfies the 
van der Waals and Platteeuw model, in order to predict the three-phase 
(/^(liquid water)-//(hydrate)-F(methane gas)) hydrate equilibrium pressure at 
any given temperature. In our calculation, the Peng-Robinson EOS is used to 
calculate the fugacity of methane. A l l the reference thermodynamic properties 
used are those listed in Table II, and the convergence criterion is either a relative 
error of less than 1% for large dissociation pressures (> 1 bar) or an absolute 
error of less than 0.05 bar for small dissociation pressures (< 1 bar). In all ab 
initio calculations in this study, the averaged potential profiles were computed 
point by point with all the intermediate values obtained via a cubic spline 
interpolation at a given temperature (43). To make sure that the spline fit works 
well outside the fitted distance, five additional highly accurate calculations 
using MP2/cc-pVQZ were performed at distances from 7.0 Â to 11.0 Â and the 
interaction energies at larger distances from 13.0 Â to 18.0 Â were set to be zero 
so that the spine-fitted profile approaches zero at very large distances, as 
expected. 

A wide temperature range from 148.8 to 320.1 Κ (37) was included in the 
phase equilibrium prediction and compared with experimental values in Figure 
6 in both linear and logarithmic scales. In Figure 6, the phase diagram 
calculated using the fitted molecular parameters within the LJD approximation, 
a potential derived from 2 n d virial coefficient data and our five-shell integration 
method are also plotted. The predicted phase diagram using the 2 n d virial 
coefficient potential gives poor agreement with experiment, possibly because it 
fails to capture the interaction in the repulsive region, but also possibly because 
of the failures of the LJD approximation. It is obvious that the LJD and five-
shell integration^) methods match the experimental data very well since they 
were fitted (separately) to the P-T phase diagram, but the ab initio potential, 
with no adjustable parameters, gives equally excellent agreement. In addition, 
below 200 Κ and above 310 K , the ab initio potential gives the best prediction 
of dissociation pressure as shown in Figure 6(a) and 6(b). The ab initio 
potential, different from any fitted potential with an analytical form, 
characterizes the interaction between guest and host molecules in a physically 
meaningful manner and provides an accurate prediction of macroscopic gas 
hydrate phase equilibria. 
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TABLE Π: Thermodynamic reference properties - Structure I water clathrate 

Chemical potential difference 
(To = 273.15 K , . P 0 = 0atm) 

1263 J -mo l " 1 

Enthalpy difference (To, P0) 

AH0 

W 
1389 J · mol" 1 

Latent Heat (To, P0) 

AH"-L -6009.5 Jmor1 

Volume differences 

AV^ 
w 

3.0x10-* m'-mol"" 1 

w - 1 . 5 9 8 x 1 0 ^ m'.mor1 

Heat capacity differences 

τ >τ0 

AC** -38.12 J-mor'-K-1 

Ab^ 0.141 J - m o l ' K " 2 

T<T0 

AC*-" 0.565 J - m o l " 1 - K " 1 

Ab^ 0.002 J · mol" 1 · Κ"2 

TABLE IN: Comparison of cage occupancies of methane hydrates in both small 
and large cages 

E . . Fitted 5-shell 
P . 4 4 integration Ab initio potential 

Τ (K) V (Kihara Potential) 
yi J2 yi J2 yi J2 

273.65 0.920 0.971 0.709 0.983 0.961 0.957 

274.65 0.899 0.972 0.710 0.983 0.961 0.957 

275.65 0.869 0.974 0.728 0.984 0.964 0.961 

276.65 0.866 0.973 0.738 0.985 0.965 0.963 
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Figure 6: Experimental and predicted methane hydrate phase diagrams 
computed using different potentials. (6(a) is a linear plot, with temperature 
below 250 Κ not shown. 6(b) is a log-linear plot, with entire temperature range 
shown.) (SOURCE: Adapted with permission from refrence 9. Copyright 2001 
American Chemical Society) 
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The ab initio potential was also used to predict the occupancies of both 
cages in methane hydrates with results listed in Table III. Experimental cage 
occupancies of methane hydrates were extracted indirectly from Raman 
spectroscopic data as reported by Sum et al. {44). The occupancy extraction 
method used in that study is model dependent and is subject to possible 
systematic errors. Because only the relative occupancy between large and small 
cages is calculated from the deconvolution of two highly overlapping bands, a 
small deviation of the ratio could introduce a large error in the resulting 
occupancies. Furthermore, because the ratio of occupancies is close to 1.0, 
these errors may actually lead to incorrect interpretation of occupancy trends 
between the two cavities. We also note that at temperatures closer to the ice 
point, our ab initio potential yields occupancies that are much more sensitive to 
variations in temperature. Further analysis wil l be presented in future work. 

Although the ab initio potential cannot be represented exactly by an 
analytical expression, the exp-6 potential provides the best representation at any 
specific temperature in both the attractive and repulsive regions and thus was 
selected in our sensitivity analysis (9). The expression for the exp-6 potential 
can be represented as 

where r is the distance between the two molecules, a is the stiffness parameter 
as a measurement of repulsive interaction, ε is the depth of the potential well, 
and r* is the distance parameter that gives the position of the minimum of the 
potential. The two parameters, ε and a were varied independently to investigate 
their effect on phase equilibrium predictions of methane hydrates. In our 
sensitivity analysis, the variation of ε/k and a from their base values were 5.0 Κ 
and 0.5 Â. Each variation shifts the predicted pressure-temperature curves by a 
factor of approximately 1.5 (see Ref. 9 for more detail). This indicates that the 
phase equilibrium prediction is extremely sensitive to both ε and a. The shape 
and curvature of the potential profile is even more sensitive to ε than to a. This 
shows again the superior advantage of our temperature dependent ab initio 
potential over simple potential forms fitted to experimental data. 

The statistical thermodynamic model for hydrate equilibria developed by 
van der Waals and Platteeuw in 1959 (2) was generalized by Parrish and 
Prausnitz for prediction of hydrate dissociation pressures (42). The method of 

ε f Γ ι f τ * (12) 

Issue of the reference state 
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phase equilibria prediction was further simplified by Holder at al. (41) in 1980 
to eliminate the need for the reference hydrate by introducing a universal set of 
reference properties for each type of structure. This established the 
methodology for most of the later thermodynamic and equilibrium calculations 
of gas hydrates (6). 

It is very important to obtain accurate values of the reference properties 
because they are the most critical inputs to the statistical model. Several 
investigators have determined values of two of the thermodynamic reference 
parameters, namely ΑμΙ and AHl. Table IV lists some of the values that have 

been determined using various calculation and experimental techniques. 
Although they seem to agree with each other to some extent, the variation 
remains large enough to affect the prediction of the model significantly. 

Independent studies by Dharmawardhana et al. (45,46) and Holder et. al 
(47), Handa and Tse (48), and Sloan (6) have obtained the three different sets 
of reference parameters that are considered the most accurate. With current 
available data in the literature, it is still unclear which set of reference 
parameters should be used in phase equilibria studies, given their apparent 
numerical discrepancies. In addition, the sensitivity of the effect on the 
prediction of phase equilibria from different values of reference properties has 
not been studied quantitatively before. 

The relationship in Eqs. 10-11 can be expanded and used to fit the reference 
properties. Holder et al. (47) integrated and rearranged Eqs. 10-11 in the 
following form 

Y=^+àHi+jw:-L(TQ) 
RT0 R 

1_J_ 

τ T0 

(13) 

where 7 is a function of the experimental conditions (Τ, P, composition) and 

other parameters, namely Αμ%~Η(Τ,Ρ), ίώβ~ι™α, ACfi~lma(TQ) and 

AV^'Loia(T0). A plot of the experimental value of Γ vs. (1/Γ-1/Γ 0) should yield 

a straight line whose intercept and slope will give us the values of ΑμΙ and 

AHl- This analysis was based on the experimental si cyclopropane data 

obtained by Dharmawardhana et al. (45,46). 
Another independent study was performed by Handa and Tse (48). The 

empty lattice of clathrate hydrates, which serves as a hypothetical reference 
state, is unstable and has never been synthesized in the laboratory. Xenon forms 
si hydrates and the fugacity of xenon is 1.467 bar for the hydrate-ice-gas 
equilibrium at 273.15 K . In the case of small and spherical monatomic species 
like xenon, this experimental condition of xenon hydrates is very close to that of 
the empty lattice (7^273.15 K , P0=0 bar). Therefore, Eq. 6 was used to 
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estimate ΑμΙ since the two fractional occupation probabilities in both cages can 

be determined from 1 2 9 X e N M R and calorimetric study (49). This is reasonable 
because the error introduced by the pressure difference, 1.47 bar, is extremely 
small compared with other terms in Eq. 11, as found in our calculations (50). 

The same fitting approach used by Holder et. al (47) can be applied to 
determine the reference properties from the ab initio pair potential. The only 
difference is that the experimental compositional measurements, yJh are not 
needed in this case to evaluate Αμβ~Η in Eq. 6 because they can be calculated 
directly from the numerical integration of the Langmuir constants C^. The only 
experimental data needed for this approach is the readily available methane 
hydrate Ρ- Τ phase equilibrium data. This gives us the great advantage of using 
nearly 100 data points in the fitting procedure and the elimination of the 
uncertainty introduced by the composition measurements that are hard to 
perform accurately in practice over a wide temperature range. 

Via this approach, we were able to obtain the reference properties directly 
from the ab initio potential and methane hydrate P-T equilibrium. Without the 
need of the composition data, we incorporated 97 data points for the methane-
water system (37) in our fitting procedure. The result is shown in Figure 7. The 
fitted reference properties (ΑμΙ = 1236 J/mol, AH°w = 1703 J/mol) are within 

the range of the previous studies as listed in Table IV. The AH°w value is on the 

high end of the experimental values, but the hydrate system is much more 
sensitive to ΑμΙ than it is to AB°w (50). The line fit had a highly linear 

correlation (R2=0.996), and we obtained a 95% confidence deviation of only 8 
J/mol for ΑμΙ from the regression analysis. This is promising because the 

regression analysis using the ab initio method is now free from the experimental 
uncertainties related to difficult composition measurements. The good linear 
relationship that results from using the ab initio method confirms, to some 
extent, that the van der Waals and Platteeuw model works well for the methane-
water system with the empty lattice as the reference state. 

Conclusions 

We have developed a six-dimensional methane-water pair potential for use 
in computing properties of methane hydrates. This potential was developed 
from ab initio calculations, using a new method for correcting from energies of 
interaction computed using small basis sets to those computed using large ones. 
The potential was validated using second virial coefficient data, spectroscopic 
data, and methane hydrate phase data. It was used to compute thermodynamic 
reference data with fewer assumptions than used hitherto. 
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Figure 7: Linear fît of ab initio methane hydrate data for evaluation of 
Structure I empty lattice reference parameters 
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interaction (CI) method 
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barriers, 397/ 
electronic states, 381 
far-infrared spectrum, 387/ 
one-dimensional potential energy 

function for ring-puckering, 
388/ 

quantum states for puckering and 
flapping vibrations, 387-388 

See also Potential energy surfaces 
(PESs), spectroscopic 
determination 

Coupled channel scattering methods, 
molecular resonances, 348 

Coupled-cluster (CC) methods 
ab initio computations of molecular 

properties, 11 
accounting for dynamic correlation, 

12 
amplitude-correcting methods, 13 
CCSD (singles and doubles), 11, 32 
effect of higher than pair clusters 
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energy, 18-19 
energy-correcting methods, 14 
energy formula, 13 
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generalized Bloch equations (DGB 

method), 15 
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exchange-correlation kernel, 203 
exchange-correlation potential, 

203 
excitation energies for C 2 H 4 , 211/ 
excited states in DFT, 201-205 
fundamental tool in quantum 

chemistry, 200 
generalized gradient approximations 

(GGAs), 202-203 
H 2 ground and excited state surfaces, 

207/ 
Jacob's jungle gym for TDDFT, 202/ 

205 
Kohn-Sham formulation, 201 
ladder-by-ladder analysis, 205-215 
local density approximation (LDA) 

by homogeneous electron gas 
(HEG), 201-202 

older and more explored (OEP) 
fourth level of ladder, 202 

problems with exchange-correlation 
energy, 205-208 

problems with exchange-correlation 
kernel, 212, 214-215 

problems with exchange-correlation 
potential, 208-212 

Aself-consistent field (ASCF) 
approach, 203-204 

solving problem of unknown 
functional, 200 

stability of Kohn-Sham wave 
function with respect to symmetry-
breaking, 206 

strength of ASCF approach, 204 
symmetry breaking in ground state, 

206,208 
Tamm-Dancoff approximation 

(TDA), 208 
TDDFT theory, 204-205 
T D L D A results for N 2 , 206/ 
time-dependent Hartree-Fock 

(TDHF), 205 
time-dependent local density 

approximation (TDLDA), 205 
traditional, 201-203 

variational collapse of ethylene π 
excitation energies above T D L D A 
ionization threshold, 210/ 

Diabatic crossings, dissociation, 355, 
356/ 

D I P - E O M - C C S D . See Double 
ionization potential equation-of-
motion coupled cluster singles and 
doubles (DIP-EOM-CCSD) 

Dipole moments 
calcium and zinc fluorides, 245/ 
calcium and zinc oxides, 245/, 252-

253 
D I P - S T E O M - C C S D . See Double 

ionization potential similarity 
transformed equation-of-motion 
coupled cluster singles and doubles 
(DIP-STEOM-CCSD) 

Dissociation. See Unimolecular 
dissociation of HOCI 

Double group symmetry 
comparing point and double group 

selection rules, 286-287 
spin-orbit coupling, 282-286 

Double ionization potential equation-
of-motion coupled-cluster singles 
and doubles (DIP-EOM-CCSD) 

method, 68 
optimization of N 0 3

+ cation ground 
state geometry, 88 

See also Nitrogen trioxide radical 
(N0 3 ) 

Double ionization potential similarity 
transformed equation-of-motion 
coupled-cluster singles and doubles 
(DIP-STEOM-CCSD) 

character of lowest D I P - S T E O M -
CCSD N 0 3

+ states, 76/ 
conical intersections of surfaces in 

C 2 v symmetry, 87/ 
method, 67-68 
optimization of N 0 3

+ cation ground 
state geometry, 88 

optimization of N 0 3

+ excited states, 
88-89 
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optimized geometries and adiabatic 
ionization potentials (IPs) for 
N 0 3

+ excited state, 79/ 
optimized geometries of N 0 3

+ cation 
excited states, 82-83 

See also Nitrogen trioxide radical 
(N0 3 ) 

Double-zeta (DZ) model 
double dissociation of water, 96/ 
HF molecule, 23-24 
N 2 , 24-27 
potential energy curves for double-

zeta (CA) HF, N 2 , and C 2 

molecules and cc-pVDZ F 2 

molecule, 49/ 
Dynamical electron correlation, vs. 

nondynamical, 2-3 
Dynamic and nondynamic correlations 

amplitude-correcting methods, 15-18 
average deviations of calculated from 

experimental frequencies of N 2 

molecule with CCSD, 4R- and 8R-
reduced multi-reference (RMR) 
CCSD methods, 17/ 

complete active space (CAS) 
methods, 94-95 

configuration interaction (CI) and 
coupled cluster (CC) method 
types, 11-12 

energy-correcting methods, 18-27 
examples of energy-correcting 

methods, 23-27 
HF molecule, 23-24 
N 2 molecule, 24-27 
theory of energy-correcting methods, 

18-23 
vibrational levels of HF using CCSD 

and 4R-RMR CCSD methods, 
16/ 

vibrational term values for N 2 and 
deviation from experimental 
values, 17/ 

Dynamics, semiclassical. See 
Forward-backward semiclassical 
dynamics (FBSD) 

Ε 

Eckart functions. See Intersystem 
crossing effects in Ο + H 2 reaction 

Effective valence shell Hamiltonian 
(H v) method 

theory, 157-159 
vertical ionization and excitation 

energies, 156-157 
Electron affinities 

calcium and zinc fluorides, 245/ 
calcium and zinc oxides, 245/ 

Electronic structure 
dynamical vs. nondynamical electron 

correlation, 2-3 
incentive to retain simplicity of 

single reference theories, 94 
multiple potential energy surfaces 

(PESs), 3-4 
nonadiabatic coupling matrix 

elements, 4-6 
nondynamical correlation, 6 
OCS, 305-308 
static correlation, 6 
See also 0 4 system 

Electronic structure programs, A C E S 
11,71-72 

Electron pair-bond 
calculations, 231/ 
See also Spectral theory of chemical 

bonding 
Electron repulsion integrals. See 

Table-configuration interaction (CI) 
method 

Energies 
comparing calcium and zinc 

fluorides and their anions, 
24 +7/ 

N 0 3

+ cation excited states, 84/, 
85/ 

Energy-correcting methods 
examples, 23-27 
HF molecule, 23-24 
N 2 molecule, 24-27 
theory, 18-23 
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Epstein-Nesbet (EN) type 
perturbation theory, unperturbed 
Hamiltonian, 20 

Equation-of-motion coupled-cluster 
singles and doubles (EOM-CCSD), 
69-70 

Equation of motion (EOM), dynamic 
vs. nondynamic correlation, 3 

Equilibrium geometry 
cation N 0 3

+ ground state, 77/ 
N 0 3 neutral ground state, 72/ 

Ethylene, C 2 H 4 

comparing all one-electron excitation 
energies of, with good ab initio 
calculations, 210/ 

correlation graph between various 
exchange, exchange-correlation 
methods, and OEP (older and 
more explored fourth level), 213/ 

correlation graph between various x-
only method and OEP, 213/ 

describing excited states, 209,211-
212 

excitation energies, 211/ 
Hartree-Fock orbitals, 211 
ionization potential, 209/ 
orbital energies, 212,213/ 
variational collapse of π excitation 

energies above time-dependent 
local density approximation 
(TDLDA), 210/ 

See also Density functional theory, 
time-dependent (TDDFT) 

Exchange-correlation energy, density 
functionals, 203 

Exchange-correlation kernel, second 
derivative, 203 

Exchange-correlation potential, effect 
on charge density, 203 

Excitation energies, comparing I V O -
CASCI and H v methods with 
experiment, 169, 170/ 

Excited states 
anions of calcium and zinc fluorides, 

244, 246-247 

anions of calcium and zinc oxides, 
253, 255 

calcium and zinc fluorides, 238 
calcium and zinc oxides, 238, 250-

253 
cations of calcium and zinc fluorides, 

247-248 
cations of calcium and zinc oxides, 

255 
See also Calcium fluoride (CaF); 

Calcium oxide (CaO); Zinc 
fluoride (ZnF); Zinc oxide 
(ZnO) 

Excited-state theory, method of 
moments of coupled-cluster 
(MMCC) , 37-41 

Extended coupled cluster (ECC), 
theory, 98 

Externally corrected (ec), coupled-
cluster CCSD methods, 13 

Flapping vibrations 
definition of coordinates, 385/ 
theory, 383,386 
See also Potential energy surfaces 

(PESs), spectroscopic 
determination 

Fluorescence excitation spectra (FES), 
383 

Fluoride F 2 , completely renormalized 
CCSD(T), CR-CCSD(TQ), and 
CR-CCSDT(Q), 50-51 

Fluorides. See Calcium fluoride (CaF); 
Zinc fluoride (ZnF) 

Fluorine monoxide (FO) 
ab initio characterization, 263/ 
comparing R K R and ab initio 

potentials, 262/ 
R K R potentials, 261,263 
R K R potentials and vibrational 

levels, 262/ 
See also Halogen monoxides 
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Forward-backward semiclassical 
dynamics (FBSD) 

advantages of tool, 414-415 
average position for one-dimensional 

quartic oscillator, 410/ 
average position of quartic oscillator 

coupled to bath of 30 harmonic 
degrees of freedom at zero 
temperature, 411/ 

coherent state density matrix, 407-
409 

coherent state prefactor, 403 
coherent state wavefunction, 403 
correlation function, 404,407 
correlation function of O - H 

stretching normal mode of water 
tetramer at zero temperature, 414/ 

correlation functions of various 
normal modes in clusters of two 
and four water molecules, 411, 
414/ 

FBSD without prefactors, 404-407 
finite temperature, 408-409 
Gaussian initial state, 407-408 
numerical examples, 409-411 
position correlation function of one-

dimensional quartic oscillator at 
two temperatures, 412/413/ 

quartic oscillator, 409-411 
semiclassical Heisenberg operator, 

405-406 
semiclassical prefactor, 402 
semiclassical propagator, 402-404 
time-dependent Hamiltonian, 405 

G 

Gas hydrates 
illustration of empty lattice structure, 

420/ 
systems of polyhedral cells, 419 
See also Methane hydrates 

G A U S S I A N software, CASPT2 
functionality, 1-2 

Genealogical configuration state 
functions. See Table-configuration 
interaction (CI) method 

Generalized gradient approximations 
(GGAs), level of approximation, 
202-203 

Geometry 
arrangement of atoms in rectangular 

L i * 135/ 
cation N 0 3

+ excited state, 79/ 
cation N G 3

+ ground state, 77/ 
N 0 3

+ cation excited states, 84/, 85/ 
N 0 3 neutral ground state, 72/ 
optimization of N 0 3

+ cation ground 
state, 88 

parameters for aliène and twisted 
aliène, 163, 164/ 

rectangular, of L i 4 model, 134, 137 
trapezoidal, of H 4 model, 137, 142, 

144 
See also Nitrogen trioxide radical 

(N0 3 ) 
Ground states 

anions of calcium and zinc fluorides, 
244,246-247 

anions of calcium and zinc oxides, 
253, 255 

calcium and zinc fluorides, 241 
calcium and zinc oxides, 248-250 
cations of calcium and zinc oxides, 

255 
See also Calcium fluoride (CaF); 

Calcium oxide (CaO); Zinc 
fluoride (ZnF); Zinc oxide (ZnO) 

Ground-state theory, method of 
moments of coupled-cluster 
(MMCC) , 34-37 

H 

H 4 model 
benchmark forjudging performance 

of multi-reference formulation, 
137 
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correlation energies of ground state 
vs. standard multi-reference (MR) 
techniques, 144/ 

description, 137, 142 
energies of 2lAi state, 146/ 
potential energy surface of ground 

state, 143/ 
potential energy surface of some 

low-lying states, 145/ 
robustness of formalisms, 142, 144 
trapezoidal geometry, 137, 142,144 

Halogen monoxides 
ab initio characterization of BrO X 

( 2 Π), 267/ 
ab initio characterization of CIO X 

( 2 Π), 265/ 
ab initio characterization of FO 

Χ( 2 Π), 263/ 
ab initio characterization of ΙΟ X 

( 2 Π), 269/ 
axial and non-axial quadrupole 

coupling parameters (eQqs), 272-
273 

BrO, 265 
BrO Χ!(2Π3/2) and Χ 2 ( 2 Π 1 / 2 ) R K R 

potentials and vibrational levels, 
266/ 

chemical bonding, 261 
CIO, 263 
CIO Χ!( 2Π3 / 2) and Χ 2 ( 2 Π 1 / 2 ) R K R 

potentials and vibrational levels, 
264/ 

comparing R K R and CCI+Q 
potential for CIO Χ ( 2Π), 264/ 

comparing R K R and MRCI potential 
for BrO X (2neff), 266/ 

comparison of FO R K R 2 Π potential 
with ab initio potentials, 262/ 

deriving R K R potentials, 261 
expectation values, 271, 272/ 
fine structure splittings, 269-270 
FO, 261,263 
FO 2 Π 3 / 2 and 2 Π 1 / 2 R K R potentials 

and vibrational levels, 262/ 
10, 267, 269 

10 Χι ( 2 Π 3 / 2 ) and Χ 2 ( 2 Π ι / 2 ) R K R 
potentials and vibrational levels, 
268/ 

magnetic hyperfine structure and 
quadrupole coupling parameters, 
271 

multi-reference configuration 
interaction (MRCI) methods for 
BrO and IO, 270 

probability of finding spin inducing 
electron at halogen nucleus, 271— 
272 

relativistic effects, 269-273 
R K R and M R D C I potentials for 10 

Χ ( 2 Π), 268/ 
spectroscopic quality potential 

energy surface, 260-261 
structural and relativistic 

contributions to eQqs, 273/ 
Hamiltonian matrix elements 

algorithm for constructing, 180 
configuration-driven algorithm, 

177 
See also Table-configuration 

interaction (CI) method 
Hellmann-Feynman theorem, 

electronic charge predictions, 
232 

HOC1. See Unimolecular dissociation 
o f H O C l 

Hoffmann-Schatz (HS), spin-orbit 
effects in bimolecular reactions, 
330-331 

Hydrates. See Methane hydrates 
Hydrogen fluoride (HF) 
double-zeta (DZ) model, 23-24 
ground-state potential energy 

surfaces (PESs), 49-50 
potential energy curve and 

vibrational term values, 52-53 
selected vibrational term values and 

dissociation energies, 52/ 
total full configuration interaction 

(FCI) energies and energy 
differences for DZ model, 24/ 
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See also Method of moments of 
coupled-cluster (MMCC) 
equations 

Hydrogen (H 2) molecule 
eigenvalues for metric matrix, 229/ 
electron pair-bond calculations, 

231/ 
energies and expectation values for 

lowest-lying states, 230, 232 
ground and excited state surfaces, 

207/ 
lowest-lying attractive and repulsive 

states of electron pair bond, 226-
227 

lowest-lying singlet and triplet states, 
235-236 

one-electron charge distribution in 
plane of two nuclei for ground 
state, 233/ 

potential energy curves, 234/ 
spectral energies for atomic 

hydrogen, 228/ 
See also H 4 model; Spectral theory of 

chemical bonding 

Improved virtual orbitals (IVO) 
generation, 159-161 
I V O - C A S C I (complete active space 

configuration interaction) method, 
156-157 

vertical ionization and excitation 
energies by IVO-CASCI , 156-157 

See also Aliène 
Indan 

comparing experimental and ab initio 
barriers, 397/ 

dispersed fluorescence spectra of jet-
cooled, 396/ 

electronic states, 381 
far-infrared spectrum, 395 
fluorescence excitation and 

ultraviolet absorption spectra, 396/ 

one-dimensional potential energy 
function for ring-puckering in 
ground and excited states, 397/ 

See also Potential energy surfaces 
(PESs), spectroscopic 
determination 

Inorganic oxides. See Halogen 
monoxides 

Intersystem crossing effects in Ο + H 2 

reaction 
Eckart functions, V n , V 2 2 , and V 2 1 , 

332 
Hoffmann-Schatz (HS) work, 330-

331 
model Hamiltonians, 331-333 
model results, 337, 341 
parameters for model Hamiltonians, 

336/ 
plots of V n , V 2 2 , and V 2 1 as function 

of distance along reaction path, 
334/ 335/ 

quantum reaction probabilities versus 
energy for each model, 338/ 339/ 
340/ 

quantum scattering calculations, 333, 
336 

spin-orbit effects in bimoiecular 
reactions, 330-331 

spin-orbit induced intersystem 
crossing, 330 

theory, 331-336 
trajectory surface hopping (TSH) 

methods, 330-331 
TSH calculations, 336 
TSH calculations with corresponding 

quantum results, 342/ 343/ 
Intruder states, appearance, 4 
Iodine monoxide (IO) 

ab initio characterization, 269/ 
R K R and M R D - C I potentials, 268/ 
R K R potentials, 267, 269 
R K R potentials and vibrational 

levels, 268/ 
See also Halogen monoxides 

Ionization energies 
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calcium and zinc fluorides, 245/ 
calcium and zinc oxides, 245/ 
neutral N 0 3 vertical, 74-77 

Ionization potentials (IPs), cation 
N 0 3

+ excited state, 79/ 
Isotope effects, dissociation lifetime, 

357, 358/ 

Jacob's ladder 
density functional approximation, 

201-202, 205 
See also Density functional theory, 

time-dependent (TDDFT) 
Jahn-Teller distortion 

difference in magnitude for excited 
states N 0 3

+ , 85/ 86 
potential energy surface for D 3 h 

degenerate electronic state (N0 3*), 
80 

Κ 

Kihara potential 
comparing corrected and uncorrected 

interaction potentials with, 430, 
431/ 

interactions between lattice and 
guests, 419 

See also Methane hydrates 
Kohn-Sham formulation 

density functional theory (DFT), 201 
stability of wave function with 

respect to symmetry breaking, 206 

Laser induced fluorescence (LIF), 
method for determining vibronic 
levels, 383 

Lennard-Jones 6-12 potential, 
interactions between lattice and 
guests, 419 

Lennard-Jones and Devonshire (LJD), 
spherical cell potential 
approximation, 419 

L i 4 model 
arrangement of L i atoms in 

rectangular, 135/ 
difference energy plot of ground state 

vs. full CI (FCI) values, 
136/ 

PES of some low-lying 1 A i states of 
rectangular model, 138/ 

PES of some low-lying 1 A 2 states of 
rectangular model, 139/ 

PES of some low-lying ! B i states of 
rectangular model, 140/ 

PES of some low-lying lB2 states of 
rectangular model, 141/ 

plot of CSF energies of rectangular 
model, 135/ 

rectangular geometry, 134,137 
Linear coefficients. See Table-

configuration interaction (CI) 
method 

Local density approximation (LDA), 
exchange-correlation energy 
density, 201-202 

Low-energy electronic states, 
theoretical advances, 401 

M 

L 

L 2 approach 
unimolecular dissociation, 350-351 
See also Unimolecular dissociation 

of HOCI 

Many-electron basis functions 
(MEBFs), assumption, 3-4 

Methane hydrates 
ab initio potential predicting cage 

occupancies, 435/ 
accuracy and efficiency of ab initio 

calculations, 421 
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application to hydrate phase 
equilibria calculations, 432-437 

approaches to model or predict phase 
equilibria for, 433-434 

ball and stick model of clathrate 
hydrate with two adjacent unit 
cells, 423/ 

binding energies calculated at cc-
pVQZ with and without 
counterpoise method, 429/ 

binding energies of H 2 0 - C H 4 

structure using six basis sets, 
428/ 

binding energy difference, 425-
426 

cage occupancies from Raman 
spectroscopic data, 437 

comparing corrected and uncorrected 
interaction potentials with Kihara 
potential, 430,431/ 

determining proportional factor and 
testing form of basis set correction 
factor, 426-427 

determining reference properties 
from ab initio pair potential, 439, 
440/ 

developing spherically symmetric 
radial potential, 427 

empty lattice of clathrate hydrates, 
438^39 

fitted reference properties, 441/ 
geometries of methane and water 

molecule, 422,425 
interaction energy between methane 

and water, 425 
issue of reference state, 437-439 
methodology of ab initio 

calculations, 421^27 
molecular orbital theories, 425 
Peng-Robinson equation of state 

(EOS), 432, 434 
phase diagram using phase 

equilibrium prediction and 
experimental values, 436/ 

potential energy hypersurface, 422 

predictions by density functional 
theory (DFT) and ab initio 
methods, 427, 430 

reference thermodynamic properties, 
435/ 

six-dimensional grid, 424/ 
treating clathrate as two-component 

system, 433 
van der Waals and Platteeuw model, 

434 
Method of moments (MM), coupled-

cluster CC method, 14 
Method of moments of coupled-

cluster (MMCC) equations 
active-space single-reference 

(SRCC) methods and equation of 
motion (EOMCC) extensions, 33 

applicability of ground-state S SRC 
approaches, 33-34 

approximate M M C C methods: 
MMCC(m A ,m B ) and renormalized 
C C schemes, 41-48 

attempts to remove failing of 
perturbative C C approximations at 
large internuelear separations, 32-
33 

C 2 molecule, 51-52 
completely renormalized CCSD(T) 

methods, 43-44 
completely renormalized CCSDT(Q) 

approach, 45 
completely renormalized CCSD(TQ) 

methods, 44-45 
completely renormalized (CR) -

CCSD(T), CR-CCSD(TQ), and 
CR-CCSDT(Q) for H 2 0 , B H , F 2 , 
andN 2 , 50-51 

energy expressions for 
MMCC(m A ,m B ) approximations, 
41-42 

EOMCC-related approach 
completing with noniterative 
M M C C , 58 

excited-state M M C C ( m A , m B ) 
methods: MMCC(2,3), 4 6 ^ 8 
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excited-state PESs, 53-59 
excited states of C 2 , 56-57 
excited-state theory, 37-41 
extension of existing SRCC methods, 

32 
general formalism, 34-41 
general nature of M M C C theory, 45-

46,59-60 
ground-state MMCC(m A ,m B ) 

methods and renormalized 
CCSD(T), CCSD(TQ), and 
eCSDT(Q) schemes, 42-46 

ground-state potential energy 
surfaces (PESs) involving bond 
breaking, 48-53 

ground-state theory, 34-37 
HF molecule, 49-50, 52-53 
MMCC(2,3), MMCC(2,4), and 

MMCC(3,4) approximations, 
43 

N 2 molecule, 51 
N 2 molecule vs. H 2 0 , 55-56 
performance of noniterative 

MMCC(2,3) approximation, 59 
potential energy curves for C H + ion, 

57/ 
potential energy curves for double-

zeta (CA) HF, N 2 , and C 2 

molecules and cc-pVDZ F 2 

molecule, 49/ 
selected vibrational term values and 

dissociation energies of HF 
molecule, 52/ 

vertical excitation energies of H 2 0 , 
N2, and C 2 , 54/ 

Model Hamiltonians. See Intersystem 
crossing effects in Ο + H 2 reaction 

Monoxides. See Halogen monoxides 
Morse potentials 

CaF and CaF , 246/ 
CaO, 250/ 
CaO and CaO', 257/ 
ZnF and ZnF , 246/ 
ZnO, 252/ 
ZnO and ZnO", 257/ 

Multi-configuration self-consistent 
(MCSCF), nondynamical electron 
correlation, 3, 6 

Multiple potential energy surfaces 
(PESs). See Potential energy 
surfaces (PESs) 

Multi-reference configuration 
interaction (MRCI), performance 
for BrO and IO, 270 

Multi-reference configuration 
interaction method (MR-CISD) 

categorizing alternatives, 2-3 
nondynamic and dynamic electron 

correlation, 2 
Multi-reference coupled-cluster linear 

response theory ( M R - C C L R T ) 
algorithmic considerations, 131-132 
performance for low-lying potential 

energy surface (PES) of L i 4 model, 
138/ 139/ 140/ 141/ 

See also State-specific multi-
reference coupled-cluster (SS-
M R C C ) methods 

Multi-reference coupled electron-pair 
approximation linear response 
theory ( M R - C E P A L R T ) 

algorithmic considerations, 131-132 
potential energy surface (PES) for 

low-lying states of H 4 model, 144, 
145/ 

See also State-specific multi-
reference coupled-cluster (SS-
M R C C ) methods 

Multi-reference perturbation theory 
(MRPT), dynamic vs. nondynamic 
correlation, 3 

Ν 

N 2 0 , shapes of H O M O and L U M O as 
function of 0,311/ 

Natural gas clathrate-hydrates 
illustration of empty lattice structure, 

420/ 
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Lennard-Jones 6-12 and Kihara 
potentials, 419 

Lennard-Jones and Devonshire 
(LJD) spherical cell potential 
approximation, 419 

systems of polyhedral cells, 419 
See also Methane hydrates 

Negative imaginary potentials, 
molecular resonances, 348, 350 

Nitrogen N 2 molecule 
completely renormalized CCSD(T), 

CR-CCSD(TQ), and C R -
CCSDT(Q), 50-51 

double-zeta (DZ) model, 24-27 
energy deviations from full 

configuration interaction (FCI), 
106/ 

excited states, 54-55 
ground-state potential energy 

surfaces (PESs), 51 
ionization potential, 209/ 
time-dependent local density 

approximation (TDLDA), 205, 
206/ 

total FCI energies and energy 
differences for DZ model, 25/ 

triple bond dissociation, 99/ 
vertical excitation energies, 54/ 
See also Coupled cluster (CC) 

methods for bond-breaking; 
Method of moments of coupled-
cluster (MMCC) equations 

Nitrogen trioxide radical (N0 3 ) 
A C E S II electronic structure 

programs, 71-72 
atmospheric chemistry, 66 
avoiding symmetry breaking problem 

of orbitals, 67 
cation contributing to sharp lower 

energy peaks, 76-77 
cation N 0 3

+ ground state 1 A ^ 
equilibrium geometry and 
vibrational frequencies, 77/ 

character of lowest double ionization 
potential similarity transformed 

equation-of-motion coupled-
cluster singles and doubles (DIP-
STEOM-CCSD) N O / states, 76/ 

configuration interaction (CI) theory 
for straightforward diagonalization 
approach, 69 

cross section of potential energy 
surface for D 3 h degenerate 
electronic state, 80/ 

difference in magnitude of Jahn-
Teller effect for excited states, 85/ 
86 

D I P - E O M - C C S D (double ionization 
potential equation-of-motion 
coupled-cluster singles and 
doubles) method, 68 

D I P - E O M - C C S D for states of N 0 3

+ 

cation, 70-71 
D I P - S T E O M - C C S D method, 67-

68 
DIP-STEOM-CCSD/TZ2P conical 

intersections of surfaces in C 2 v 

symmetry, 87/ 
DIP-STEOM-CCSD/TZ2P 

optimized geometries and 
adiabatic electronic ionization 
potentials (IPs) for lE" state, 79/ 

DIP-STEOM-CCSD/TZ2P 
optimized geometries of three 
excited states, 82-83 

energy diagram of uppermost 
restricted Hartree-Fock (RHF) 
orbitals of N0 3 " , 69/ 

E O M - C C S D method for excitation 
energies, electron affinities, 
ionization potentials of closed-
shell systems, 69-70 

experimental photoelectron 
spectrum, 75/ 

experimental study measuring Hel 
photoelectron (PE) spectrum, 66 

first photoionization study of neutral 
system, 66 

Fock space multi-reference coupled-
cluster (FSMRCC), 67 
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graph of DIP-STEOM-CCSD/TZ2P 
relative energies of components of 
3 E " , 3 E \ and 3 A 2 ' states at each 
optimized geometry, 85/ 

harmonic vibrational frequencies at 
minimum and transition state 
stationary points, 81/ 

Jahn-Teller distortion, 80 
neutral ground state 2 A 2 ' equilibrium 

geometry and vibrational 
frequencies, 72/ 

neutral vertical ionization energies, 
74-77 

N 0 3

+ cation excited states 3 E " , 3 E' , 
and 3 A 2 ' , 82-88 

N 0 3

+ cation ground state 77-78 
N 0 3

+ cation excited state 'Ε", 79-82 
N 0 3 neutral ground state 2 A 2 *, 72-73 
optimization of 3 E M , 3 E ' , and 3 A 2

f 

states in DIP-STEOM-CCSD, 
88-89 

quasi-restricted Hartree-Fock 
coupled-cluster (QRHF CC), 67 

relative energies of five components 
of states at each optimized 
geometries, 84/ 

relative ionization potentials (IPs), 75 
RHF CCSD(T) geometry 

optimization of cation ground 
state, 78 

single point calculations at RHF 
CCSD(T)/TZ2P optimized C 2 v 

geometry, 78 
S T E O M - C C S D method for 

excitation energies, double 
electron attachments, and double 
ionization potentials of closed-
shell systems, 70 

symmetrically correct wavefunctions 
for ground state, 67 

symmetry breaking problem for 
neutral and cation ground states, 
66-67 

theoretical and computational details, 
68-72 

vertical ionization energies, 74/ 
vertical ionization spectrum by D I P -

S T E O M - C C S D and D I P - E O M -
CCSD methods, 88 

Non-adiabatic coupling matrix 
( N A C M ) 

model, 362-363 
quantizing for sub-Hilbert space 

(SHS), 362,376 
treatment of model, 366-367 
See also Adiabatic-to-diabatic 

transformation matrix and rotation 
matrix 

Non-adiabatic coupling terms 
(NACTs) 

comparison to potential energy 
surfaces, 362 

features and role in molecular 
physics, 361-362 

See also Adiabatic-to-diabatic 
transformation matrix and rotation 
matrix 

Nondynamical electron correlation 
describing potential energy surfaces 

(PESs), 6 
versus dynamical, 2-3 

Ο + H 2 reaction. See Intersystem 
crossing effects in Ο + H 2 reaction 

0 4 system 
ab initio reduced dimensionality 

surface for vibrationally selected 
rate constants, 319 

CASMP2 method, 316 
CCSD(T)method,316 
chemical composition of atmosphere, 

317 
chemically bound complex, 316 
combined experimental and 

theoretical study of products 
energy distribution for reverse 
ozone forming reaction, 319 
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condensed phases of oxygen, 315 
evidence for spin-orbit coupling, 322 
evidence of non-adiabatic behavior 

in highly vibrationally excited 0 2 

and 0 4 , 320-323 
experimental determination of self-

relaxation rates of molecular 
oxygen, 317-318 

formation of oxygen rings, 316 
internuelear distance for spectator 

bond, 319 
ozone forming reaction, 322-323 
potential energy surface, 318-319 
spin-orbit coupling effects for 

collision system, 321-322 
spin-orbit transitions, 322 
study of highly vibrationally excited 

molecules, 317 
theoretical studies on ozone forming 

reaction (Rl) , 318-319 
unsolved questions and speculations, 

323-324 
van der Waals complex, 315 
vibrational, rotational, and 

translational energy distributions 
for 0 2 from reverse ozone forming 
reaction, 323 

vibrational relaxation mechanisms, 
320 

OCS 
bending potential around point of 

largest non-adiabatic coupling 
along reaction coordinate, 311/ 

bimodal speed distribution of S, 
303 

bond angles of triatomic molecules, 
306-307 

CASSCF calculations, 305 
configuration state functions (CSFs), 

305 
2D imaging ofS^D;,) in 

photodissociation of, 302-303 
electronic structure, 305-308 
inverse Abel transforms of S( ! D 2 ) 

images at 223, 235, and 248 nm, 
304/ 

non-adiabatic bending dissociation as 
orbital unlocking, 309, 312 

non-adiabatic transition in bending 
coordinate, 308-309 

photodissociation, 301 
picture of molecular orbitals (MOs) 

along reaction coordinate, 310/ 
resonance-enhanced multiphoton 

ionization (REMPI), 301 
section of potential energy surfaces 

for R and θ coordinates, 305/ 
306/311/ 

shapes of H O M O and L U M O of N 2 0 
as function of Θ, 311/ 

two-dimensional photofragment 
imaging, 301-302 

Walsh diagram for isovalent C 0 2 , 
307/ 

Orbital unlocking, non-adiabatic 
bending dissociation, 309, 312 

Oscillator strengths, comparing I V O -
CASCI and H v methods with 
experiment, 169, 170/ 

Oxides. See Calcium oxide (CaO); 
Halogen monoxides; Zinc oxide 
(ZnO) 

Oxygen, molecular 
evidence of non-adiabatic behavior 

in highly vibrationally excited, 
320-321 

experimental determination of self-
relaxation rates, 317-318 

mechanism for dark channel in 
collisions of highly vibrationally 
excited 0 2 , 324 

vibrational, rotational, and 
translational energy distributions 
for 0 2 from reverse ozone forming 
reaction, 323 

vibrational relaxation mechanism, 
320 

See also 0 4 system; Ozone, 0 3 

Ozone, 0 3 

reaction forming, 322-323 
theoretical studies on ozone forming 

reaction, 318-319 
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unsolved problem, 324 
vibrational, rotational, and 

translational energy distributions 
for 0 2 from reverse ozone forming 
reaction, 323 

See also 0 4 system 

Pauli-Breit Hamiltonian 
Hermitian character, 281-282 
spin-orbit coupling, 277-278 
See also Symmetry in spin-orbit 

coupling 
Peng-Robinson equation of state 

(EOS), 432, 434 
Phase equilibria. See Methane 

hydrates 
Photochemistry. See Density 

functional theory, time-dependent 
(TDDFT) 

Photodissociation 
inverse Abel transforms of S(*D2) 

images at 223, 235, and 248 nm, 
304/ 

OCS, 301 
two-dimensional imaging of S(*D2) 

of OCS, 302-303 
Photoelectron spectrum, nitrogen 

trioxide, 75/ 
Photofragment imaging, two-

dimensional, 301-302 
Phthalan (PHT) 

comparing experimental and ab initio 
barriers, 397/ 

electronic states, 381 
electronic transition producing 

S ^ T T * ) state, 389/ 
far-infrared spectrum, 388-

389 
molecular orbitals, 389/ 
potential energy along ring-

puckering coordinate for ground 
and excited states, 390/ 

spectroscopic transitions for ground 
and excited states, 384/ 

See also Potential energy surfaces 
(PESs), spectroscopic 
determination 

Point group symmetry 
comparing point and double group 

selection rules, 286-287 
spin-orbit coupling, 286 

Potential energy curves 
torsional, for positive aliène ion, 166, 

167/ 
torsional, o f C 3 H 4 , 169, 171/ 

Potential energy surfaces (PESs) 
accuracy and effort of calculation vs. 

reliability for multiple, 4-5 
development of methods including 

relativistic effects, 5 
excited-state PESs, 53-59 
extension of single-reference 

coupled-cluster (SRCC) methods, 
32 

ground-state, involving bond 
breaking, 48-53 

HF molecule, 49-50 
HOC1, 351-352 
linear response theory based on state-

specific multi-reference coupled 
cluster formalism ( M R - C C L R T ) , 
125-128 

linear response theory based on state-
specific multi-reference coupled 
electron-pair approximation ( M R -
CEPALRT) , 128-130 

multiple, 3-4 
N 2 molecule vs. H 2 0 , excited states, 

55-56 
nondynamical correlation, 6 
nuclear motion, 300-301 
potential energy curves for C H + ion, 

57/ 
potential energy curves for double-

zeta (DZ) HF, N 2 , and C 2 

molecules and cc-pVDZ F 2 

molecule, 49/ 
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problems of using multi-reference 
coupled-cluster (MRCC) theories, 
111-112 

progress of theoretic study, 1-2 
rigorous approaches, 5-6 
sections of OCS along R and θ 

coordinates, 305/ 306/ 311/ 
spectroscopic quality, 260-261 
spin-orbit effects, 5 
vertical excitation energies of H 2 0 , 

N 2 , and C 2 , 54/ 
See also Halogen monoxides; 

Method of moments of coupled-
cluster (MMCC) equations; 
Potential energy surfaces (PESs), 
spectroscopic determination; 
State-specific multi-reference 
coupled-cluster (SS-MRCC) 
methods 

Potential energy surfaces (PESs), 
spectroscopic determination 

comparison of experimental and ab 
initio barriers for molecules in 
indan family, 397/ 

conformational changes along 
vibrational pathways, 381 

definition for puckering and flapping 
vibrational coordinates, 385/ 

determining quantum states for 
puckering and flapping vibrations, 
387-388 

dispersed fluorescence spectra of jet-
cooled indan, 396/ 

electronic states of molecules in 
indan family, 381 

far-infrared spectrum of coumaran, 
387/ 

far-infrared spectrum of phthalan 
(PHT), 388-389 

fluorescence excitation and 
ultraviolet absorption spectra of 
indan, 396/ 

fluorescence excitation spectra and 
ultraviolet absorption spectra of 
1,3-benzodioxole (BZD), 391/ 

fluorescence excitation spectra 
(FES), 383 

indan, parent molecule, 395 
investigation of B Z D , 390-391, 395 
kinetic energy function for cross term 

of B Z D , 386/ 
laser induced fluorescence (LIF), 383 
molecular orbitals for PHT and 

electronic transition producing 
Sifoîi;*) state, 389/ 

η-σ* anomeric interaction for B Z D , 
394/ 

one-dimensional potential energy 
function for ring-puckering of 
coumaran, 388/ 

one-dimensional potential energy 
functions for ring-puckering of 
indan in ground and excited states, 
397/ 

out-of-plane vibrations of indan, 382/ 
PES along flapping coordinate, 389-

390 
potential energy along ring-

puckering coordinate for ground 
and excited states S ^ T T * ) of 
PHT, 390/ 

ring-puckering quantum states of 
B Z D in different flapping and 
electronic states, 392/ 

single vibrational level fluorescence 
(SVLF), 383 

spectroscopic methods for 
determining vibrational quantum 
states, 381, 383 

spectroscopic transitions for ground 
and excited states of PHT and 
related molecules, 384/ 

theory, 383, 386 
two-dimensional PES of B Z D in S 0 

state, 393/ 
vibrational frequency below 300 cm" 

',381 
1,2-Propadiene. See Aliène 
Puckering vibrations 

definition of coordinates, 385/ 
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theory, 383, 386 
See also Potential energy surfaces 

(PESs), spectroscopic 
determination 

Q 

Quadratic coupled cluster doubles 
(QCCD) 

double bond-breaking, 99 
method, 98 
triple bond-breaking, 100 

Quantum scattering 
calculations, 333, 336 
quantum reaction probabilities versus 

energy for models, 338/339/ 
340/ 

trajectory surface hopping (TSH) and 
quantum results for models, 341, 
342/ 343/ 

See also Intersystem crossing effects 
in Ο + H 2 reaction 

Quartic oscillator 
average position for one-

dimensional, 410/ 
average position of, coupled to bath 

of 30 harmonic degrees of freedom 
at zero temperature, 411/ 

example using forward-backward 
semiclassical dynamics (FBSD), 
409-411 

position correlation function of one-
dimensional, at two temperatures, 
412/413/ 

Quasi-degenerate perturbation theory 
(QDPT) 

dynamic vs. nondynamic correlation, 3 
theory, 132-133 

R 

Rectangular geometry, L i 4 model, 134, 
137 

Reduced multi-reference coupled-
cluster (RMRCC) approaches 

coupled-cluster CCSD method, 14 
molecular potential energy surfaces, 

32 
successes of R M R C C singles and 

doubles (RMRCCSD) approach, 
32-33 

Relativistic effects, potential energy 
surfaces (PESs), 5 

Renormalized versions, coupled-
cluster CCSD methods, 14 

Resonance-enhanced multiphoton 
ionization (REMPI), photofragment 
imaging, 301 

Resonance theory 
resonance wavefunction, 348, 349/ 
review, 347-351 
See also Unimolecular dissociation 

o f H O C l 
Ring-puckering. See Potential energy 

surfaces (PESs), spectroscopic 
determination 

R K R potentials. See Halogen 
monoxides 

S 

Schrôdinger equation, obstacle in 
numerical solution, 401 

Self-consistent field (SCF) 
density functional theory (DFT), 

203-204 
strength of approach, 204 

Semiclassical dynamics 
forward-backward, without 

prefactors, 404-407 
quantum mechanics, 402-404 
See also Forward-backward 

semiclassical dynamics (FBSD) 
Similarity transformed equation-of-

motion coupled-cluster singles and 
doubles (STEOM-CCSD) method, 
70 
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Similarity transform equation of 
motion (STEOM), dynamic vs. 
nondynamic correlation, 3 

Single-reference coupled-cluster 
(SRCC) methods 

active-space, 33 
applicability of ground-state SRCC 

approaches, 33-34 
extension to quasidegenerate and 

excited states, 32 
linear response theory (SR-CCLRT), 

125-128 
See also Method of moments of 

coupled-cluster (MMCC) 
equations 

Single reference electronic structure 
methods, simplicity, 94 

Single vibrational level fluorescence 
(SVLF), laser induced fluorescence 
(LIF), 383 

Spectral theory of chemical bonding 
antisymmetric subspace, 225-226 
application of formalism to lowest-

lying singlet and triplet states of 
H 2 , 235-236 

computational applications, 226-235 
eigenvalues of metric matrix S for 

H 2 , 227,229/ 230 
electronic charge predictions, 232 
electron pair-bond calculations, 23 1/ 
energies and expectation values for 

lowest-lying states in H 2 ,230, 232 
lowest-lying attractive and repulsive 

states of electron pair bond (H 2), 
226-227 

many-electron Hamiltonian operator, 
224 

one-electron charge distribution in 
plane of two nuclei for ground 
state, 233/ 

potential energy curves in H 2 from 
recursive development, 234/ 

predictions of chemical structure and 
reactions, 222 

rate of convergence with increasing 
angular momentum, 232 

recursive projection procedure, 225-
226, 232, 235 

role of symmetric group, 222-223 
spectral energies for atomic 

hydrogen, 228/ 
theoretical approach, 223 
theoretical formalism, 223-225 

Spectroscopic properties 
calcium and zinc fluorides, 253/ 
calcium and zinc oxides, 251/ 

Spin-orbit coupling 
effects for collision system 0 2 + 0 2 , 

321-322 
0 4 system, 322 
See also Symmetry in spin-orbit 

coupling 
Spin-orbit effects 
bimoiecular reactions, 330-331 
potential energy surfaces (PESs), 

5 
State-averaged multiconfiguration 

self-consistent (SA-MCSCF) , 
nondynamical electron correlation, 
6 

State-reference coupled-cluster 
(SRCC) 

accuracy at SD or SD(T) truncation 
levels, 110 

multi-reference (MR) generalization, 
111 

theory, 110 
treating quasi-degeneracy, 110-111 
See also State-specific multi-

reference coupled-cluster (SS-
M R C C ) methods 

State-specific multi-reference 
coupled-cluster (SS-MRCC) 
methods 

algorithmic considerations, 131-132 
approximate versions, 117-124 
Baker-Campbell-Hausdorff formula, 

116 
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correlation energies for ground state 
of H 4 model vs. standard M R 
techniques, 144/ 

difference energy plot of ground state 
of L i 4 model vs. full CI (FCI), 
136/ 

energies of 2 ! Aj state of H 4 model, 
146/ 

Epstein-Nesbet (EN) partitioning, 
119-120 

expressions for Rayleigh-
Schrôdinger (RS) and Brillouin-
Wigner (BW) based SS-MRPT, 
118 

formalism, 112-113 
geometrical arrangement of atoms in 

rectangular Li4, 135/ 
H 4 model: trapezoidal geometry, 137, 

142, 144 
L i 4 model: rectangular geometry, 

134, 137 
linear response theory based on S S -

M R C C formalism ( M R - C C L R T ) , 
125-128 

linear response theory based on S S -
M R C E P A formalisms ( M R -
CEPALRT) , 128-130 

M R configuration interaction 
(MRCI) equation, 124 

numerical implementation, 131-132 
PES of ground state of H 4 model, 

143/ 
PES of some low-lying *Aj states of 

L i 4 model, 138/ 
PES of some low-lying lA2 states of 

L i 4 model, 139/ 
PES of some low-lying lB{ states of 

L i 4 model, 140/ 
PES of some low-lying *B 2 states of 

L i 4 model, 141/ 
PES of some low-lying states of H 4 

model, 145/ 
plot of CSF energies of L i 4 model, 

135/ 

problems in use of M R C C for 
studying potential energy surfaces 
(PESs), 111-112 

quasi-degenerate perturbation theory 
(MC-QDPT), 132-133 

SRCC theory, 110 
SS formalism, 116-117 
SS M R coupled electron-pair 

approximation (SS-MRCEPA) 
formalisms, 122-124 

S S - M R perturbation theories (SS-
MRPT), 117-122 

state-universal M R C C ( S U - M R C C ) 
theory, 114-115 

strength of MR-based method, 111 
testing robustness of formalisms for 

H 4 model, 142, 144 
theories of excited state PES via 

linear response approach, 125-130 
theory, 113-117 

State-specific multi-reference coupled 
electron-pair approximation (SS-
M R C E P A ) 

algorithmic considerations, 131 
approximations, 122-123 
energies for 2 l A i state of H 4 model, 

146/ 
energies for ground state of H 4 

model, 142, 144/ 
energy and cluster amplitude finding 

equations, 123 
ground state PES for H 4 model, 142, 

143/ 
linear response theories, 128-130 
M R configuration interaction 

(MRCI) equation, 124 
State-specific multi-reference 

perturbation theories (SS-MRPT) 
algorithmic considerations, 131 
energy denominators in Rayleigh-

Schrôdinger (RS) and Bril louin-
Wigner (BW) versions, 121 

Epstein-Nesbet (EN) partitioning, 
119-120 
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expressions for RS and B W versions, 
118 

Hamiltonian, 117-118 
perturbed energy, 120 
pseudo-effective operator, 121-122 
size-extensivity of perturbative 

formalisms, 118-120 
unperturbed energy, 120 

State specific (SS) 
approaches, 11 
coupled-cluster CCSD methods, 

13 
generalized Β loch equations (DGB 

method), 14-15 
State-universal multi-reference 

coupled-cluster (SU-MRCC), 
theory, 114-115 

Symmetry in spin-orbit coupling 
arbitrary configuration interaction 

(CI) wavefunction symmetry 
labeling, 290-293 

Clebsch-Gordan coefficient 
relations, 279-280, 293, 295 

comparison of point and double 
group selection rules, 286-287 

computational speed-up, 287-288 
detailed structure of H s o matrix, 295-

296 
double group symmetry, 282-286 
efficient spin-orbit (SO) coupling 

calculation, 277 
general SO matrix element, 277 
Hermitian character of H s o , 281-282 
Hermiticity and time reversal, 280-

281 
Hso matrix for different 

multiplicities, 296/ 
Hso matrix for equal multiplicities, 

296/ 
improving conventional scalar 

calculations, 276-277 
Pauli-Breit Hamiltonian SO 

coupling, H s o , 277-278 
phases and determinants, 294/ 
point group symmetry, 286 

relativistic spin-dependent 
correction, 277-278 

scalability of SOC code, 289/ 
states represented by real valued 

wavefunctions, 280-281 
time-reversal symmetry, 282 
Wigner-Eckart theorem, 278-280 
Wigner functions, 290 

Table-configuration interaction (CI) 
method 

algorithm constructing Hamiltonian 
matrix elements, 180 

analysis of ΔΚ=1 cases, 185-190 
analysis of ΔΚ=2 case, 182-185 
analysis of pairs of configurations 

with same number of open shells, 
190-196 

analysis of relationships between 
pairs of configurations, 180-196 

case of same configuration, 195-196 
case of spin-free Hamiltonian, 178— 

179 
configuration-driven algorithm, 177 
electron repulsion integrals and 

linear coefficients for ΔΚ=0, P=l 
case, 191/ 

electron repulsion integrals and 
linear coefficients for ΔΚ=1, P=l 
case, 186/ 

electron repulsion integrals and 
linear coefficients for ΔΚ=2 case, 
183/ 

ΔΚ=0, P=l case, 190-192 
ΔΚ=0, P=2 case, 192-193 
ΔΚ=0, P=3 case, 193-195 
ΔΚ=1,Ρ=1 case, 185-187 
ΔΚ=1,Ρ=2 case, 187-188 
ΔΚ=1,Ρ=3 case, 188-190 
ΔΚ describing pairs of 

configurations, 180 
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parameters Ρ labeling types of 
molecular integral, 180 

possible non-vanishing relationships 
between random pairs of 
configurations, 181/ 

requirement for effective 
implementation, 185 

use of genealogical CSFs, 177— 
180 

Tamm-Daneoff approximation 
(TDA), excitation energy equation, 
208 

Time-dependent local density 
approximation (TDLDA), lowest 
level, 205 

Torsional potential energy curves 
aliène, 169, 171/ 
positive aliène ion, 166, 167/ 

Trajectory surface hopping (TSH) 
calculations, 336 
methods, 330-331 
See also Intersystem crossing effects 

in Ο + H 2 reaction 
Trapezoidal geometry, H 4 model, 137, 

142, 144 

U 

Unimolecular dissociation of HOC1 
absorbing potentials, 350 
calculation of energies and widths of 

resonances by L 2 method, 352 
complex coordinate method, 348 
computational details and results for 

HOC1 resonances, 352-357 
coupled channel scattering methods, 

348 
diabatic crossings, 355, 356/ 
diagonalization of complex 

Hamiltonian, 353, 354/ 
dissociation lifetime and isotope 

effects, 357, 358/ 
experimental work, 347 

Hamiltonian for any total angular 
momentum, J and quantum 
number, K , 352-353 

L 2 approach, 350-351 
negative imaginary potentials, 348, 

350 
potential energy surface for HOC1, 

351-352 
resonance wavefunction, 348, 349/ 
review of resonance theory and 

calculations, 347-351 
variation of 6V 0 H resonance width 

with J, 353, 355, 357 
7V 0 H and 8V 0 H resonances, 357 

Unrestricted Hartree-Fock (UHF), 
dissociation limit, 12 

V 

Valence optimized orbital (VOO), 
coupled-cluster CCSD method, 14 

van der Waals complex, 0 4 system, 
315 

Variational coupled cluster doubles 
(VCCD) 

double bond dissociation of water, 
95, 96/ 

triple bond dissociation, 99/ 100 
Vertical excitation energies (VEE), 

comparing methods for aliène, 169, 
172/, 173 

Vertical ionization energies, neutral 
nitrogen trioxide, 74-77 

Vertical ionization potentials (VIPs) 
aliène as function of reference space, 

165/ 
aliène by methods and experiment, 

165/ 
comparing VIPs by I V O - C A S C I and 

H v methods using bases of 
increasing size, 166, 168/ 

Vibrational frequencies 
cation N 0 3

+ ground state, 77-78 
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minimum and transition state 
stationary points for excited states 
(N0 3

+ ) , 81-82 
neutral N 0 3 ground state, 72-73 
See also Nitrogen trioxide radical 

(N0 3 ) 
Vibrations. See Potential energy 

surfaces (PESs), spectroscopic 
determination 

See also Symmetry in spin-orbit 
coupling 

Wigner rotation matrix 
calculation, 373-375 
See also Adiabatic-to-diabatic 

transformation matrix and rotation 
matrix 

W 

Water 
completely renormalized CCSD(T), 

CR-CCSD(TQ), and C R -
CCSDT(Q), 50-51 

correlation function of O - H 
stretching normal mode of 
tetramer at zero temperature, 
414/ 

correlation function of various 
normal modes in clusters of two or 
four, 411,414/ 

double bond dissociation using 
perfect pairing (PP), imperfect 
pairing (IP), and restricted pairing 
models, 102/ 

double zeta (DZ) basis for double 
dissociation of, 96/ 

energy deviations from full CI (FCI) 
for double dissociation, 106/ 

excited states, 54-55 
variational C C D (VCCD), 

conventional CCD, and full CI 
(FCI) calculations on double 
dissociation of, 96/ 

vertical excitation energies, 54/ 
See also Coupled cluster (CC) 

methods for bond-breaking; 
Methane hydrates 

Wigner-Eckart theorem 
functions, 290 
spin-orbit coupling calculations, 

278-280 

Zinc 
atomic characteristics, 240 
selected energy levels, 240/ 

Zinc fluoride (ZnF) 
anions, 244,246-247 
cations, 247-248 
comparison of CaF and ZnF and their 

anions, 247/ 
dipole moments, 245/ 
excited electronic states, 238 
generalized Morse potentials, 246/ 
ionization energies and electron 

affinities, 245/ 
neutrals, 241,244 
population analysis, 242/ 
spectroscopic properties, 243/ 
technical details, 239 
theoretical work, 239 

Zinc oxide (ZnO) 
anions, 253,255 
cations, 255 
comparison of CaO and ZnO and 

their anions, 256/ 
dipole moments, 245/, 252-253 
excited electronic states, 238 
generalized Morse potentials, 252/ 257/ 
ionization energies and electron 

affinities, 245/ 
Mulliken populations, 252 
neutrals, 248-253 
population analysis, 249/ 
spectroscopic properties, 251/, 254/ 
technical details, 239 
theoretical work, 239 
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